期刊在線咨詢服務(wù),立即咨詢
時(shí)間:2023-03-23 15:24:47
導(dǎo)言:作為寫(xiě)作愛(ài)好者,不可錯(cuò)過(guò)為您精心挑選的10篇數(shù)學(xué)思想論文,它們將為您的寫(xiě)作提供全新的視角,我們衷心期待您的閱讀,并希望這些內(nèi)容能為您提供靈感和參考。
第一,在學(xué)習(xí)新內(nèi)容時(shí)要滲透數(shù)學(xué)思想。在設(shè)計(jì)教案時(shí)教師要有意識(shí)地增加數(shù)學(xué)思想的啟發(fā),將數(shù)學(xué)思想與新的數(shù)學(xué)知識(shí)結(jié)合起來(lái),避免只講知識(shí)表面不講數(shù)學(xué)原理,只講習(xí)題不講思想。在講授新內(nèi)容時(shí),不能直接將相關(guān)概念和定理告訴學(xué)生,而是通過(guò)一定的方法引導(dǎo)和啟發(fā)學(xué)生逐步探索、猜測(cè),慢慢接近,掌握知識(shí)形成過(guò)程中的相關(guān)思想,鍛煉學(xué)生的數(shù)學(xué)思維。這樣學(xué)生可以發(fā)揮數(shù)學(xué)思維能力去推理,對(duì)所學(xué)知識(shí)理解得更加透徹,記憶也更加深刻。
第二,在解題中滲透數(shù)學(xué)思想。數(shù)學(xué)離不開(kāi)解題,但是解題的方法不止一種,多一種方法就可能多一種數(shù)學(xué)思想。如蘇教版的練習(xí)冊(cè)中有這樣一道題:1998×3.14+199.8×31.4+19.98×314。先讓學(xué)生觀察數(shù)字的關(guān)聯(lián)性,學(xué)生會(huì)很容易看出數(shù)值1998小數(shù)點(diǎn)在往左移動(dòng),3.14的小數(shù)點(diǎn)在往右移動(dòng),兩個(gè)數(shù)值相乘,根據(jù)小數(shù)點(diǎn)移動(dòng)的知識(shí),學(xué)生能夠推斷出三個(gè)乘積是相等的,無(wú)論它們?cè)趺醋儎?dòng),小數(shù)點(diǎn)后面一共是兩位,只要算出1998×3.14再乘以3就可以了。這個(gè)解題思路實(shí)際上滲透了劃歸的數(shù)學(xué)思想。教師要在解題之前就開(kāi)始向?qū)W生滲透,解題之后還要進(jìn)行深化點(diǎn)睛,久而久之,學(xué)生就掌握了這種方法。
第三,經(jīng)常講,反復(fù)講。數(shù)學(xué)思想滲透是需要潛移默化的,教師要堅(jiān)持這一過(guò)程,在講課時(shí)不斷舉一反三,幫助學(xué)生深刻領(lǐng)會(huì)。
第四,要引導(dǎo)學(xué)生從生活中發(fā)現(xiàn)數(shù)學(xué)思想,鼓勵(lì)學(xué)生將課堂中學(xué)到的思想運(yùn)用到生活中,將生活中的問(wèn)題帶到課堂上。
二、用辯證唯物主義觀點(diǎn)對(duì)學(xué)生進(jìn)行教育
在數(shù)學(xué)中到處充滿著辯證的方法和思維,中學(xué)數(shù)學(xué)的教學(xué)大綱指出:“要用辯證唯物主義觀點(diǎn)來(lái)闡明教學(xué)的內(nèi)容,這樣學(xué)生既有利于學(xué)習(xí)基礎(chǔ)知識(shí),學(xué)生又有利于形成唯物主義世界觀。”在數(shù)學(xué)的教學(xué)中可用以下幾點(diǎn)來(lái)滲透辯證唯物主義的觀點(diǎn)。
1.科學(xué)是在不斷發(fā)展的,任何事物都不是一成不變的,人們的認(rèn)識(shí)水平也是在不斷提高的。數(shù)的擴(kuò)充、代數(shù)與幾何的結(jié)合,某些定理、推論的推廣,發(fā)展的觀點(diǎn)由此得到體現(xiàn)。
2.物質(zhì)的根本屬性是運(yùn)動(dòng)。在數(shù)學(xué)當(dāng)中,面可以看成點(diǎn)線運(yùn)動(dòng)的軌跡,旋轉(zhuǎn)體也是平面圖形運(yùn)動(dòng)的結(jié)果,直線是向兩邊無(wú)限延伸的,在教學(xué)的過(guò)程當(dāng)中強(qiáng)調(diào)這些,使同學(xué)們?cè)跐撘颇?,接受到辯證法中運(yùn)動(dòng)的觀點(diǎn)。
3.在數(shù)學(xué)教學(xué)過(guò)程中,正數(shù)與負(fù)數(shù)、有理數(shù)與無(wú)理數(shù)、實(shí)數(shù)與虛數(shù)等,這些不同的概念是對(duì)立的,同時(shí)又是統(tǒng)一的。加與減的轉(zhuǎn)化,乘與除的統(tǒng)一,乘方與開(kāi)方的互逆,在教學(xué)中強(qiáng)調(diào)這些數(shù)學(xué)規(guī)律,讓學(xué)生從中接受到矛盾與對(duì)立統(tǒng)一及相互轉(zhuǎn)化觀點(diǎn)。
4.將辯證唯物主義觀點(diǎn)滲透于教學(xué)中,數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用與實(shí)踐,同時(shí)在數(shù)學(xué)教學(xué)中,也要加強(qiáng)對(duì)學(xué)生數(shù)學(xué)精神的培養(yǎng),加強(qiáng)德育的滲透,讓學(xué)生領(lǐng)悟到數(shù)學(xué)中的辯證關(guān)系,從而初步形成辯證唯物主義的觀點(diǎn)。
數(shù)學(xué)思想數(shù)學(xué)論文參考文獻(xiàn):
[1]范璐璐.解析數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].中國(guó)教育學(xué)刊,2014,(06).
[2]姜嫦君,劉靜霞.小學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)思想方法的滲透[J].延邊教育學(xué)院學(xué)報(bào),2010,(02).
[3]鄒益群.試論數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].才智,2015,(15).
[4]俞元苗.論數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].才智,2013,(36):104-104.
[5]范璐璐.解析數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].才智,2014,(6):47-47.
[6]曾國(guó)棟.數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].現(xiàn)代教育科學(xué)(普教研究),2014,(6):154-154,116.
[7]鄒益群.試論數(shù)學(xué)思想、數(shù)學(xué)活動(dòng)與小學(xué)數(shù)學(xué)教學(xué)[J].才智,2015,(15):169-169.
數(shù)學(xué)思想數(shù)學(xué)論文參考文獻(xiàn):
[1]于芳.小學(xué)數(shù)學(xué)課堂教學(xué)的現(xiàn)實(shí)性研究[D].湖南師范大學(xué),2012.
[2]朱黎生.指向理解的小學(xué)“數(shù)與運(yùn)算”內(nèi)容的教材編寫(xiě)策略研究[D].西南大學(xué),2013.
[3]劉勛達(dá).小學(xué)數(shù)學(xué)模型思想及培養(yǎng)策略研究[D].華中師范大學(xué),2013.
[4]張桂芳.小學(xué)數(shù)學(xué)解決問(wèn)題方法多樣化的研究[D].西南大學(xué),2013.
[5]俞祥龍.分類思想在中職數(shù)學(xué)中的滲透[J].數(shù)學(xué)學(xué)習(xí)與研究,2015(13):16-17.
[6]李祎.高水平數(shù)學(xué)教學(xué)到底該教什么[J].數(shù)學(xué)教育學(xué)報(bào),2014(6).
[7]雷會(huì)榮.淺談數(shù)學(xué)思想在極限教學(xué)中的滲透[J].教育探索,2011(12):58-59.
數(shù)學(xué)思想數(shù)學(xué)論文參考文獻(xiàn):
[1]林雪.關(guān)于轉(zhuǎn)化思想方法在高中數(shù)學(xué)解題中的應(yīng)用探討[J].中國(guó)校外教育,2016,23(13)
[2]韓云霞,馬旭.淺談函數(shù)思想在高中數(shù)學(xué)解題中的應(yīng)用[J].寧夏師范學(xué)院學(xué)報(bào),2016,22(3)
分類應(yīng)該按同一標(biāo)準(zhǔn)進(jìn)行,也就是每次分類不能使用幾個(gè)不同的分類根據(jù)。例如:把三角形分為等邊三角形和不等邊三角形是按邊分類的。但是直角三角形、鈍角三角形、銳角三角形、等腰三角形、等邊三角形,這種分類就不正確,此種分類既是按邊分類也按角分類。
2.相斥性原則
分類后的每一個(gè)子項(xiàng)應(yīng)具備互不相容的原則,也就是不能出現(xiàn)有一項(xiàng)既屬于這一類又屬于那一類。例如學(xué)校舉行運(yùn)動(dòng)會(huì),規(guī)定每個(gè)學(xué)生只能參加一項(xiàng)比賽,初一三班的6名同學(xué)報(bào)名參加200和400米的賽跑,其中有4人參加200米比賽,3人參加400米比賽,那么就有1人既參加200米又參加400米比賽,這道題目的分類就違背了相斥性原則。
3.完善性原則
分類應(yīng)當(dāng)完善,即劃分后子項(xiàng)的總和應(yīng)當(dāng)與母項(xiàng)相等。如:有人把實(shí)數(shù)分為正實(shí)數(shù)和負(fù)實(shí)數(shù)兩類,這個(gè)分類是不完善的,因?yàn)樽禹?xiàng)的總和小于母項(xiàng)。事實(shí)上實(shí)數(shù)中還包括零。
4.遞進(jìn)性原則
分類后的子項(xiàng)還可以繼續(xù)再進(jìn)一步分類,直到不能再分為止,層次分明。例如實(shí)數(shù)可以分為無(wú)理數(shù)和有理數(shù),有理數(shù)還可以分為整數(shù)和分?jǐn)?shù),整數(shù)又可以分為正整數(shù),零和負(fù)整數(shù)。我們?cè)谶\(yùn)用分類討論的思想解決問(wèn)題時(shí),首先要審清題意,認(rèn)真分析可能產(chǎn)生的不同因素,進(jìn)行討論時(shí)要確定分類的標(biāo)準(zhǔn),每一次分類只能按照一個(gè)標(biāo)準(zhǔn)來(lái)分,不能重復(fù)也不能遺漏,另外還要逐一認(rèn)真解答。
二、分類思想在初中數(shù)學(xué)教學(xué)中的應(yīng)用
1.概念分類
例如在學(xué)習(xí)完負(fù)數(shù)、有理數(shù)的概念后,針對(duì)于不同的標(biāo)準(zhǔn),有理數(shù)有多種的分類方法,若按定義來(lái)分類有理數(shù)可以分為分?jǐn)?shù)和整數(shù),分?jǐn)?shù)又可以分為正分?jǐn)?shù)和負(fù)分?jǐn)?shù),整數(shù)又可以分為正整數(shù)、負(fù)整數(shù)和零;若按正負(fù)來(lái)分類有理數(shù)可以分為正有理數(shù)、負(fù)有理數(shù)和零,正有理數(shù)又分為正整數(shù)、正分?jǐn)?shù),負(fù)有理數(shù)又分為負(fù)整數(shù)、負(fù)分?jǐn)?shù)。
2.在解題方法上分類討論
例如:解方程∣x+3∣+∣4-x∣=7解析:對(duì)于絕對(duì)值問(wèn)題,往往要對(duì)絕對(duì)值符號(hào)內(nèi)的內(nèi)容分為正數(shù)、負(fù)數(shù)、零三種,在此方程中出現(xiàn)兩個(gè)數(shù)的絕對(duì)值;∣x+3∣和∣4-x∣,∣x+3∣應(yīng)分為x=-3,x<-3,x>-3;∣4-x∣應(yīng)分為x=4,x<4,x>4,在數(shù)軸上可見(jiàn)該題應(yīng)劃分為三種情形:①x<-3,②-3≤x≤4,③x>4。解:①若x<-3,化簡(jiǎn)-(x+3)+4-x=7得x=-3,與x<-3矛盾,所以x<-3時(shí)方程無(wú)解。②若-3≤x≤4,原方程x+3+4-x=7恒成立,滿足-3≤x≤4的一切實(shí)數(shù)x都是方程的解。③若x>4,化為x+3-(4-x)=7,得x=4,與x>4矛盾,所以x>4時(shí)無(wú)解。綜上所述,原方程的解為滿足-3≤x≤4。3.在幾何中圖形位置關(guān)系不確定的分類:例如:已知a的絕對(duì)值是b絕對(duì)值的3倍,且在數(shù)軸上a、b位于原點(diǎn)的同側(cè),兩點(diǎn)之間的距離為16,求這兩個(gè)數(shù);若數(shù)軸上表示這兩數(shù)的點(diǎn)位于原點(diǎn)兩側(cè)呢?分析:從題目中尋找關(guān)鍵的解題信息,“數(shù)軸上表示這兩數(shù)的點(diǎn)位于原點(diǎn)的同側(cè)”意味著甲乙兩數(shù)符號(hào)相同。那么究竟是正數(shù)還是負(fù)數(shù),我們應(yīng)該用分類討論的數(shù)學(xué)思想解決這一問(wèn)題。解:由題意得:∣a∣=3∣b∣,∣a-b∣=16
小學(xué)數(shù)學(xué)教材是數(shù)學(xué)教學(xué)的顯性知識(shí)系統(tǒng),許多重要的法則、公式,教材中只能看到漂亮的結(jié)論,許多例題的解法,也只能看到巧妙的處理,而看不到由特殊實(shí)例的觀察、試驗(yàn)、分析、歸納、抽象概括或探索推理的心智活動(dòng)過(guò)程。因此,數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的隱性知識(shí)系統(tǒng),小學(xué)數(shù)學(xué)教學(xué)應(yīng)包括顯性和隱性兩方面知識(shí)的教學(xué)。如果教師在教學(xué)中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習(xí)這一傳統(tǒng)的教學(xué)過(guò)程,即使教師講深講透,并要求學(xué)生記住結(jié)論,掌握解題的類型和方法,這樣培養(yǎng)出來(lái)的學(xué)生也只能是“知識(shí)型”、“記憶型”的,將完全背離數(shù)學(xué)教育的目標(biāo)。
在認(rèn)知心理學(xué)里,思想方法屬于元認(rèn)知范疇,它對(duì)認(rèn)知活動(dòng)起著監(jiān)控、調(diào)節(jié)作用,對(duì)培養(yǎng)能力起著決定性的作用。學(xué)習(xí)數(shù)學(xué)的目的“就意味著解題”(波利亞語(yǔ)),解題關(guān)鍵在于找到合適的解題思路,數(shù)學(xué)思想方法就是幫助構(gòu)建解題思路的指導(dǎo)思想。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,提高學(xué)生的元認(rèn)知水平,是培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題能力的重要途徑。
數(shù)學(xué)知識(shí)本身是非常重要的,但它并不是惟一的決定因素,真正對(duì)學(xué)生以后的學(xué)習(xí)、生活和工作長(zhǎng)期起作用,并使其終生受益的是數(shù)學(xué)思想方法。未來(lái)社會(huì)將需要大量具有較強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)素質(zhì)的人才。21世紀(jì)國(guó)際數(shù)學(xué)教育的根本目標(biāo)就是“問(wèn)題解決”。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是未來(lái)社會(huì)的要求和國(guó)際數(shù)學(xué)教育發(fā)展的必然結(jié)果。
小學(xué)數(shù)學(xué)教學(xué)的根本任務(wù)是全面提高學(xué)生素質(zhì),其中最重要的因素是思維素質(zhì),而數(shù)學(xué)思想方法就是增強(qiáng)學(xué)生數(shù)學(xué)觀念,形成良好思維素質(zhì)的關(guān)鍵。如果將學(xué)生的數(shù)學(xué)素質(zhì)看作一個(gè)坐標(biāo)系,那么數(shù)學(xué)知識(shí)、技能就好比橫軸上的因素,而數(shù)學(xué)思想方法就是縱軸的內(nèi)容。淡化或忽視數(shù)學(xué)思想方法的教學(xué),不僅不利于學(xué)生從縱橫兩個(gè)維度上把握數(shù)學(xué)學(xué)科的基本結(jié)構(gòu),也必將影響其能力的發(fā)展和數(shù)學(xué)素質(zhì)的提高。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是數(shù)學(xué)教學(xué)改革的新視角,是進(jìn)行數(shù)學(xué)素質(zhì)教育的突破口。
二、小學(xué)數(shù)學(xué)教學(xué)中應(yīng)滲透哪些數(shù)學(xué)思想方法
古往今來(lái),數(shù)學(xué)思想方法不計(jì)其數(shù),每一種數(shù)學(xué)思想方法都閃爍著人類智慧的火花。一則由于小學(xué)生的年齡特點(diǎn)決定有些數(shù)學(xué)思想方法他們不易接受,二則要想把那么多的數(shù)學(xué)思想方法滲透給小學(xué)生也是不大現(xiàn)實(shí)的。因此,我們應(yīng)該有選擇地滲透一些數(shù)學(xué)思想方法。筆者認(rèn)為,以下幾種數(shù)學(xué)思想方法學(xué)生不但容易接受,而且對(duì)學(xué)生數(shù)學(xué)能力的提高有很好的促進(jìn)作用。
1.化歸思想
化歸思想是把一個(gè)實(shí)際問(wèn)題通過(guò)某種轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問(wèn)題,把一個(gè)較復(fù)雜的問(wèn)題轉(zhuǎn)化、歸結(jié)為一個(gè)較簡(jiǎn)單的問(wèn)題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。
例1狐貍和黃鼠狼進(jìn)行跳躍比賽,狐貍每次可向前跳41/2米,黃鼠狼每次可向前跳23/4米。它們每秒種都只跳一次。比賽途中,從起點(diǎn)開(kāi)始,每隔123/8米設(shè)有一個(gè)陷阱,當(dāng)它們之中有一個(gè)掉進(jìn)陷阱時(shí),另一個(gè)跳了多少米?
這是一個(gè)實(shí)際問(wèn)題,但通過(guò)分析知道,當(dāng)狐貍(或黃鼠狼)第一次掉進(jìn)陷阱時(shí),它所跳過(guò)的距離即是它每次所跳距離41/2(或23/4)米的整倍數(shù),又是陷阱間隔123/8米的整倍數(shù),也就是41/2和123/8的“最小公倍數(shù)”(或23/4和123/8的“最小公倍數(shù)”)。針對(duì)兩種情況,再分別算出各跳了幾次,確定誰(shuí)先掉入陷阱,問(wèn)題就基本解決了。上面的思考過(guò)程,實(shí)質(zhì)上是把一個(gè)實(shí)際問(wèn)題通過(guò)分析轉(zhuǎn)化、歸結(jié)為一個(gè)求“最小公倍數(shù)”的問(wèn)題,即把一個(gè)實(shí)際問(wèn)題轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問(wèn)題,這種化歸思想正是數(shù)學(xué)能力的表現(xiàn)之一。
2.數(shù)形結(jié)合思想
數(shù)形結(jié)合思想是充分利用“形”把一定的數(shù)量關(guān)系形象地表示出來(lái)。即通過(guò)作一些如線段圖、樹(shù)形圖、長(zhǎng)方形面積圖或集合圖來(lái)幫助學(xué)生正確理解數(shù)量關(guān)系,使問(wèn)題簡(jiǎn)明直觀。
例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
附圖{圖}
此題若把五次所喝的牛奶加起來(lái),即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫(huà)一個(gè)正方形,并假設(shè)它的面積為單位“1”,由圖可知,1-1/32就為所求,這里不但向?qū)W生滲透了數(shù)形結(jié)合思想,還向?qū)W生滲透了類比的思想。
3.變換思想
變換思想是由一種形式轉(zhuǎn)變?yōu)榱硪环N形式的思想。如解方程中的同解變換,定律、公式中的命題等價(jià)變換,幾何形體中的等積變換,理解數(shù)學(xué)問(wèn)題中的逆向變換等等。
例3求1/2+1/6+1/12+1/20+……+1/380的和。
仔細(xì)觀察這些分母,不難發(fā)現(xiàn):2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考慮和式中的一般項(xiàng)
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,問(wèn)題轉(zhuǎn)換為如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.組合思想
組合思想是把所研究的對(duì)象進(jìn)行合理的分組,并對(duì)可能出現(xiàn)的各種情況既不重復(fù)又不遺漏地一一求解。
例4在下面的乘法算式中,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字,求這個(gè)算式。
從小愛(ài)數(shù)學(xué)
×4
──────
學(xué)數(shù)愛(ài)小從
分析:由于五位數(shù)乘以4的積還是五位數(shù),所以被乘數(shù)的首位數(shù)字“從”只能是1或2,但如果“從”=1,“學(xué)”×4的積的個(gè)位應(yīng)是1,“學(xué)”無(wú)解。所以“從”=2。
在個(gè)位上,“學(xué)”×4的積的個(gè)位是2,“學(xué)”=3或8。但由于“學(xué)”又是積的首位數(shù)字,必須大于或等于8,所以“學(xué)”=8。
在千位上,由于“小”×4不能再向萬(wàn)位進(jìn)位,所以“小”=1或0。若“小”=0,則十位上“數(shù)”×4+3(進(jìn)位)的個(gè)位是0,這不可能,所以“小”=1。
在十位上,“數(shù)”×4+3(進(jìn)位)的個(gè)位是1,推出“數(shù)”=7。
在百位上,“愛(ài)”×4+3(進(jìn)位)的個(gè)位還是“愛(ài)”,且百位必須向千位進(jìn)3,所以“愛(ài)”=9。
故欲求乘法算式為
21978
×4
──────
87912
上面這種分類求解方法既不重復(fù),又不遺漏,體現(xiàn)了組合思想。
此外,還有符號(hào)思想、對(duì)應(yīng)思想、極限思想、集合思想等,在小學(xué)數(shù)學(xué)教學(xué)中都應(yīng)注意有目的、有選擇、適時(shí)地進(jìn)行滲透。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
1.提高滲透的自覺(jué)性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫(xiě)在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,并且不成體系地散見(jiàn)于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時(shí)間緊而將它作為一個(gè)“軟任務(wù)”擠掉。對(duì)于學(xué)生的要求是能領(lǐng)會(huì)多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。
2.把握滲透的可行性
大學(xué)數(shù)學(xué)是大學(xué)本科階段必修的重要的基礎(chǔ)理論課程,對(duì)于非數(shù)學(xué)專業(yè)來(lái)說(shuō),大學(xué)數(shù)學(xué)主要是指高等數(shù)學(xué)、線性代數(shù)和概率論三門(mén)課程,當(dāng)然也包括其他一些工程數(shù)學(xué)如復(fù)變函數(shù)、數(shù)學(xué)物理方程以及計(jì)算方法等。長(zhǎng)期以來(lái),大學(xué)數(shù)學(xué)的教學(xué)一直面臨著內(nèi)容多、負(fù)擔(dān)重、枯燥泛味、學(xué)生積極性較低等問(wèn)題。如今我國(guó)的高等教育已變成大眾化教育,高校生源質(zhì)量明顯下降,大學(xué)生學(xué)習(xí)的自覺(jué)性、積極性以及努力程度等均在下降,這在一般的本科院校中尤為突出。這也使得大學(xué)數(shù)學(xué)的不及格率急劇上升,有的專業(yè)有些班級(jí)的不及格率高達(dá)50%,20-30%的不及格率更是普遍,補(bǔ)考重修的大軍可謂浩浩蕩蕩,有的甚至畢業(yè)了還要回校補(bǔ)考高等數(shù)學(xué)。教師也是叫苦不迭,一次又一次出題改卷錄分?jǐn)?shù),工作量一下子就增大不少。很多學(xué)生表示自己不是不想學(xué),是沒(méi)興趣學(xué),覺(jué)得學(xué)了又沒(méi)什么用,而學(xué)習(xí)過(guò)程又是枯燥的,于是便不想學(xué)了。偶然看到一位工科學(xué)生學(xué)習(xí)數(shù)學(xué)的感言:數(shù)學(xué)像是一個(gè)無(wú)底洞,小學(xué)時(shí)老師給了我一盞煤油燈,領(lǐng)著我進(jìn)去;中學(xué)時(shí)煤油燈換成了一盞桐油燈,老師趕著我自己摸索進(jìn)去;上了大學(xué),我懷抱著工程師、設(shè)計(jì)師的夢(mèng)想,滿以為可以領(lǐng)略到數(shù)學(xué)的用武之地,然而老師告訴我,你現(xiàn)在學(xué)的還是基礎(chǔ),要用沒(méi)到時(shí)候呢;每天似音樂(lè)符的積分號(hào)充塞我的頭腦,我沒(méi)能譜寫(xiě)好美妙動(dòng)聽(tīng)的交響曲,卻漸漸變成了老油條,夢(mèng)想就此也遠(yuǎn)去了。這雖然只是大學(xué)生的只言片語(yǔ),但從中也能窺視到當(dāng)代大學(xué)生的內(nèi)心世界。他們渴望學(xué)好數(shù)學(xué),將數(shù)學(xué)應(yīng)用到專業(yè)技術(shù)中,使他們成為專業(yè)技術(shù)能手。但是大學(xué)數(shù)學(xué)的教學(xué)不能滿足他們的愿望,使得他們?cè)趯W(xué)習(xí)的過(guò)程中逐漸失去了學(xué)習(xí)數(shù)學(xué)的興趣,失去了動(dòng)力和信心。因此,培養(yǎng)大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣至關(guān)重要。
一、興趣在大學(xué)數(shù)學(xué)學(xué)習(xí)中所起的作用
孔子曰“:知之者不如好之者,好之者不如樂(lè)之者”。興趣可以讓人從平淡中發(fā)現(xiàn)瑰麗,從困頓中崛起。強(qiáng)烈的興趣往往可以像聚焦鏡一樣,將人們的注意力專注于所愛(ài)好的事物,吸引人們反復(fù)揣摩、鉆研和思考,像一盞指明燈引導(dǎo)人們尋找自己的航向。沒(méi)有興趣,就會(huì)失去動(dòng)力。只有學(xué)生對(duì)數(shù)學(xué)發(fā)生濃厚的興趣,他才會(huì)積極主動(dòng)地去學(xué)習(xí)它、鉆研它并且應(yīng)用它。只有這樣,師生的教學(xué)活動(dòng)才會(huì)輕松、愉快,并能夠保證良好的教學(xué)質(zhì)量。學(xué)習(xí)過(guò)程中,一旦有了興趣,很多學(xué)生就能夠發(fā)揮主動(dòng)性,樂(lè)于去思考問(wèn)題,喜歡提出問(wèn)題,進(jìn)而去探究問(wèn)題的解決方法,也就有了數(shù)學(xué)思維,有利于培養(yǎng)學(xué)生的創(chuàng)新能力。學(xué)生是教學(xué)過(guò)程的主體,只有主體發(fā)揮自身主觀能動(dòng)性,教學(xué)活動(dòng)才能有效地完成,教學(xué)質(zhì)量才會(huì)提高?,F(xiàn)在的大學(xué)生多是獨(dú)生子女,家庭生活條件較優(yōu)越,個(gè)性大都特立獨(dú)行,缺乏自我約束能力,一遇到挫折就會(huì)退縮,做事但憑著自己的喜好和興趣。對(duì)自己感興趣的事情執(zhí)著追求,但是不感興趣的東西,哪怕家長(zhǎng)老師天天追著說(shuō)很重要,他也不會(huì)理睬。有些學(xué)生第一學(xué)期高等數(shù)學(xué)不及格,問(wèn)其原因,答曰:不感興趣,逼著我學(xué)也沒(méi)用。做思想工作的時(shí)候,甚至還有學(xué)生說(shuō):不感興趣,老師你別管我。然后依舊我行我素,其他數(shù)學(xué)課程的學(xué)習(xí)也可想而知。任憑輔導(dǎo)員、任課教師以及家長(zhǎng)苦口婆心,學(xué)生本身沒(méi)有興趣,說(shuō)什么也是無(wú)用。學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣的激發(fā)和培養(yǎng)離不開(kāi)教師的引導(dǎo),尤其是在大學(xué)數(shù)學(xué)學(xué)習(xí)上。很多學(xué)生對(duì)大學(xué)數(shù)學(xué)的作用認(rèn)識(shí)不清,覺(jué)得學(xué)來(lái)無(wú)用,何必費(fèi)力去學(xué)。此外,大學(xué)數(shù)學(xué)中復(fù)雜枯燥的符號(hào)運(yùn)算、繁瑣的公式推導(dǎo)、一些概念的高度抽象性以及證明過(guò)程的嚴(yán)密邏輯性也令學(xué)生對(duì)大學(xué)數(shù)學(xué)望而生畏,從而影響了學(xué)習(xí)的興趣。這也給廣大的大學(xué)數(shù)學(xué)教師帶來(lái)了嚴(yán)峻的考驗(yàn)及挑戰(zhàn),如何在教學(xué)過(guò)程中激發(fā)和培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,如何讓學(xué)生對(duì)大學(xué)數(shù)學(xué)有一個(gè)正確的認(rèn)識(shí),使之能夠主動(dòng)去學(xué),樂(lè)于去學(xué),并能夠樂(lè)在其中,這值得好好思考和探究。
二、數(shù)學(xué)建模可激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
現(xiàn)今,數(shù)學(xué)建模競(jìng)賽風(fēng)靡全球高校,數(shù)學(xué)建模的作用已被大家所認(rèn)同,特別是對(duì)培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣起到重要作用。很多高校的數(shù)學(xué)教學(xué)也逐漸引入數(shù)學(xué)建模思想進(jìn)行教學(xué)改革創(chuàng)新,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生自主解決問(wèn)題的能力以及創(chuàng)新能力[1-3]。數(shù)學(xué)建模是用數(shù)學(xué)語(yǔ)言來(lái)描述和解決實(shí)際問(wèn)題的過(guò)程,將實(shí)際問(wèn)題抽象成為數(shù)學(xué)問(wèn)題,并應(yīng)用合理的數(shù)學(xué)方法進(jìn)行求解,進(jìn)而轉(zhuǎn)化為對(duì)現(xiàn)實(shí)問(wèn)題的求解、詮釋和預(yù)測(cè)等[4,5]。在數(shù)學(xué)建模培訓(xùn)過(guò)程中,發(fā)現(xiàn)有的學(xué)生為了解決一個(gè)問(wèn)題,可以抱著數(shù)學(xué)類參考書(shū)津津有味地看上大半天也不會(huì)走神。但是,對(duì)比高等數(shù)學(xué)課堂,哪怕是最認(rèn)真的學(xué)生,偶爾還是會(huì)走神,不是還會(huì)有厭煩的情緒。探究其原因,無(wú)非還是一個(gè)興趣問(wèn)題。建模過(guò)程,針對(duì)一般是實(shí)際問(wèn)題,學(xué)生對(duì)這個(gè)問(wèn)題感興趣,就會(huì)有探究到底的心理,進(jìn)而就有原動(dòng)力去尋找解決問(wèn)題的思路和方法。而課堂學(xué)習(xí),大多因?yàn)檎n時(shí)原因,教師無(wú)法在有限的時(shí)間里去詳細(xì)介紹每一個(gè)知識(shí)點(diǎn)的實(shí)際應(yīng)用背景。更確切的說(shuō)很難與學(xué)生所學(xué)專業(yè)結(jié)合,給出數(shù)學(xué)概念的實(shí)際應(yīng)用背景以及概念的來(lái)由,這必將導(dǎo)致課堂教學(xué)枯燥乏味,學(xué)生自然沒(méi)有欲望去學(xué),更不愿主動(dòng)去學(xué)。在課堂教學(xué)中,如果能夠充分結(jié)合數(shù)學(xué)建模的思想,將其融入課堂,給枯燥乏味的數(shù)學(xué)公式、推理過(guò)程賦予生命般的活力,特別是能夠結(jié)合學(xué)生專業(yè)背景進(jìn)行教學(xué),必定能夠激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,進(jìn)而主動(dòng)探究知識(shí),教師也能夠避免傳統(tǒng)教學(xué)中一味注入式“概念———定理———證明———例題———作業(yè)———考試”的教學(xué)方式。學(xué)生能夠從學(xué)習(xí)中尋找樂(lè)趣,獲得成就感,教師也能夠在教學(xué)中與學(xué)生共同成長(zhǎng)進(jìn)步。數(shù)學(xué)建模不僅僅培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)及方法分析、解決問(wèn)題的能力,也培養(yǎng)了學(xué)生的團(tuán)隊(duì)協(xié)作能力、交流能力以及語(yǔ)言和文字表達(dá)能力,同時(shí)也培養(yǎng)了學(xué)生的競(jìng)爭(zhēng)意識(shí)。建模時(shí),學(xué)生會(huì)對(duì)實(shí)際問(wèn)題感興趣,當(dāng)把問(wèn)題抽象成數(shù)學(xué)模型時(shí),會(huì)有一定的成就感,而成就感會(huì)引發(fā)更濃的興趣,使得學(xué)生在學(xué)習(xí)過(guò)程中能夠充分享受樂(lè)趣,自信心也得到加強(qiáng)。
三、數(shù)學(xué)建模融入教學(xué)中的改革思路
數(shù)學(xué)建模猶如一道數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,使學(xué)生的數(shù)學(xué)知識(shí)與應(yīng)用能力能夠有效的結(jié)合起來(lái)。學(xué)生參與數(shù)學(xué)建模活動(dòng),感受數(shù)學(xué)的生命力和魅力,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,有助于其創(chuàng)新能力的培養(yǎng)。為了將數(shù)學(xué)建模的思想融入大學(xué)數(shù)學(xué)教學(xué),這里給出幾點(diǎn)改革思路:
(一)大學(xué)數(shù)學(xué)課程每部分內(nèi)容中安排相關(guān)的數(shù)學(xué)建模教學(xué)內(nèi)容
相關(guān)的數(shù)學(xué)建模教學(xué)內(nèi)容可以是案例式,也可以是實(shí)際問(wèn)題,要充分考慮學(xué)生專業(yè)背景。教師課前把問(wèn)題告知學(xué)生,課上通過(guò)啟發(fā)和組織學(xué)生討論,引導(dǎo)學(xué)生將所學(xué)知識(shí)運(yùn)用到解決問(wèn)題中。例如教學(xué)利用積分求不規(guī)則物體的體積或質(zhì)量時(shí),可以在課前給出具體物件(可以根據(jù)不同專業(yè)來(lái)選擇具體物件),讓學(xué)生課后自己去尋找解決辦法。教學(xué)時(shí)可先組織討論學(xué)生想出解決辦法,活躍課堂氣氛的同時(shí)能夠激發(fā)學(xué)生學(xué)習(xí)興趣。
(二)數(shù)學(xué)建模教學(xué)內(nèi)容引入大學(xué)數(shù)學(xué)教材
目前大部分教材基本上以概念、定理、推證、例題、習(xí)題的邏輯順序出現(xiàn),給出的應(yīng)用背景多數(shù)限于物理應(yīng)用,同樣缺乏活力和生命力。很多學(xué)生往往在預(yù)習(xí)時(shí),看教材的應(yīng)用背景時(shí)就已經(jīng)對(duì)學(xué)習(xí)這部分內(nèi)容失去興趣,有了這樣的心理暗示,課堂上教師很難將其注意力吸引住。所以,大學(xué)數(shù)學(xué)的教材編寫(xiě)上,必須重視內(nèi)容的更新和拓展,引入一些建模實(shí)例,通過(guò)實(shí)例激發(fā)學(xué)習(xí)興趣,進(jìn)而增強(qiáng)學(xué)生對(duì)數(shù)學(xué)重要性的認(rèn)識(shí)。
(三)根據(jù)學(xué)生實(shí)際情況,分層次進(jìn)行教學(xué)活動(dòng)
數(shù)學(xué)基礎(chǔ)課程一般都是大班級(jí)授課,教學(xué)過(guò)程中教師不可能監(jiān)控到每個(gè)學(xué)生的學(xué)習(xí)狀態(tài)。通過(guò)數(shù)學(xué)建模活動(dòng),可以有效地考查學(xué)生的學(xué)習(xí)狀態(tài),有助于區(qū)分學(xué)生的學(xué)習(xí)層次,教師才能真正做到有的放矢,幫助學(xué)生發(fā)掘自身潛力,培養(yǎng)學(xué)生學(xué)習(xí)成就感,激發(fā)學(xué)生學(xué)習(xí)興趣。
四、結(jié)束語(yǔ)
將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)中,給從事數(shù)學(xué)課程教學(xué)的教師帶來(lái)了新的挑戰(zhàn)。盡管面臨較大的壓力,但如果能夠積極發(fā)揮自身作用進(jìn)行改革,在教學(xué)過(guò)程中逐漸融入數(shù)學(xué)建模思想,必定會(huì)使得我們的大學(xué)數(shù)學(xué)教學(xué)工作做得更好,學(xué)生更有興趣學(xué)習(xí)數(shù)學(xué)。
參考文獻(xiàn)
[1]王芬,夏建業(yè),趙梅春,等.金融類高校高等數(shù)學(xué)課程融入數(shù)學(xué)建模思想初探[J].教育教學(xué)論壇,2016(1).
[2]吳金枚.數(shù)學(xué)建模的三大作用[J].當(dāng)代教育發(fā)展學(xué)刊,2010:5-6.
[3]沈文選,歐陽(yáng)新龍.簡(jiǎn)析中學(xué)數(shù)學(xué)建模的教育性質(zhì)[J].ForumonCurrentEducation,2002(2):91-92.
“數(shù)學(xué)思想”作為數(shù)學(xué)課程論的一個(gè)重要概念,我們完全有必要對(duì)它的內(nèi)涵與外延形成較為明確的認(rèn)識(shí)。關(guān)于這個(gè)概念的內(nèi)涵,我們認(rèn)為:數(shù)學(xué)思想是人們對(duì)數(shù)學(xué)科學(xué)研究的本質(zhì)及規(guī)律的理性認(rèn)識(shí)。這種認(rèn)識(shí)的主體是人類歷史上過(guò)去、現(xiàn)在以及將來(lái)有名與無(wú)名的數(shù)學(xué)家;而認(rèn)識(shí)的客體,則包括數(shù)學(xué)科學(xué)的對(duì)象及其特性,研究途徑與方法的特點(diǎn),研究成就的精神文化價(jià)值及對(duì)物質(zhì)世界的實(shí)際作用,內(nèi)部各種成果或結(jié)論之間的互相關(guān)聯(lián)和相互支持的關(guān)系等。可見(jiàn),這些思想是歷代與當(dāng)代數(shù)學(xué)家研究成果的結(jié)晶,它們蘊(yùn)涵于數(shù)學(xué)材料之中,有著豐富的內(nèi)容。
通常認(rèn)為數(shù)學(xué)思想包括方程思想、函數(shù)思想、數(shù)形結(jié)合思想、轉(zhuǎn)化思想、分類討論思想和公理化思想等。這些都是對(duì)數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)通過(guò)概括而獲得的認(rèn)識(shí)成果。既然是認(rèn)識(shí)就會(huì)有不同的見(jiàn)解,不同的看法。實(shí)際上也確實(shí)如此,例如,有人認(rèn)為中學(xué)數(shù)學(xué)教材可以用集合思想作主線來(lái)編寫(xiě),有人認(rèn)為以函數(shù)思想貫穿中學(xué)數(shù)學(xué)內(nèi)容更有利于提高數(shù)學(xué)教學(xué)效果,還有人認(rèn)為中學(xué)數(shù)學(xué)內(nèi)容應(yīng)運(yùn)用數(shù)學(xué)結(jié)構(gòu)思想來(lái)處理等等。盡管看法各異,但筆者認(rèn)為,只要是在充分分析、歸納概括數(shù)學(xué)材料的基礎(chǔ)上來(lái)論述數(shù)學(xué)思想,那么所得的結(jié)論總是可能做到并行不悖、互為補(bǔ)充的,總是能在中學(xué)數(shù)學(xué)教材中起到積極的促進(jìn)作用的。
關(guān)于這個(gè)概念的外延,從量的方面講有宏觀、中觀和微觀之分。
屬于宏觀的,有數(shù)學(xué)觀(數(shù)學(xué)的起源與發(fā)展、數(shù)學(xué)的本能和特征、數(shù)學(xué)與現(xiàn)實(shí)世界的關(guān)系),數(shù)學(xué)在科學(xué)中的文化地位,數(shù)學(xué)方法的認(rèn)識(shí)論、方法論價(jià)值等;屬于中觀的,有關(guān)于數(shù)學(xué)內(nèi)部各個(gè)部門(mén)之間的分流的原因與結(jié)果,各個(gè)分支發(fā)展過(guò)程中積淀下來(lái)的內(nèi)容上的對(duì)立與統(tǒng)一的相克相生的關(guān)系等;屬于微觀結(jié)構(gòu)的,則包含著對(duì)各個(gè)分支及各種體系結(jié)構(gòu)定內(nèi)容和方法的認(rèn)識(shí),包括對(duì)所創(chuàng)立的新概念、新模型、新方法和新理論的認(rèn)識(shí)。
從質(zhì)的方面說(shuō),還可分成表層認(rèn)識(shí)與深層認(rèn)識(shí)、片面認(rèn)識(shí)與完全認(rèn)識(shí)、局部認(rèn)識(shí)與全面認(rèn)識(shí)、孤立認(rèn)識(shí)與整體認(rèn)識(shí)、靜態(tài)認(rèn)識(shí)與動(dòng)態(tài)認(rèn)識(shí)、唯心認(rèn)識(shí)與唯物認(rèn)識(shí)、謬誤認(rèn)識(shí)和正確認(rèn)識(shí)等。
二、數(shù)學(xué)思想的特性和作用
數(shù)學(xué)思想是在數(shù)學(xué)的發(fā)展史上形成和發(fā)展的,它是人類對(duì)數(shù)學(xué)及其研究對(duì)象,對(duì)數(shù)學(xué)知識(shí)(主要指概念、定理、法則和范例)以及數(shù)學(xué)方法的本質(zhì)性的認(rèn)識(shí)。它表現(xiàn)在對(duì)數(shù)學(xué)對(duì)象的開(kāi)拓之中,表現(xiàn)在對(duì)數(shù)學(xué)概念、命題和數(shù)學(xué)模型的分析與概括之中,還表現(xiàn)在新的數(shù)學(xué)方法的產(chǎn)生過(guò)程中。它具有如下的突出特性和作用。
(一)數(shù)學(xué)思想凝聚成數(shù)學(xué)概念和命題,原則和方法
我們知道,不同層次的思想,凝聚成不同層次的數(shù)學(xué)模型和數(shù)學(xué)結(jié)構(gòu),從而構(gòu)成數(shù)學(xué)的知識(shí)系統(tǒng)與結(jié)構(gòu)。在這個(gè)系統(tǒng)與結(jié)構(gòu)中,數(shù)學(xué)思想起著統(tǒng)帥的作用。
(二)數(shù)學(xué)思想深刻而概括,富有哲理性
各種各樣的具體的數(shù)學(xué)思想,是從眾多的具體的個(gè)性中抽取出來(lái)且對(duì)個(gè)性具有普遍指導(dǎo)意義的共性。它比某個(gè)具體的數(shù)學(xué)問(wèn)題(定理法則等)更具有一般性,其概括程度相對(duì)較高。現(xiàn)實(shí)生活中普遍存在的運(yùn)動(dòng)和變化、相輔相成、對(duì)立統(tǒng)一等“事實(shí)”,都可作為數(shù)學(xué)思想進(jìn)行哲學(xué)概括的材料,這樣的概括能促使人們形成科學(xué)的世界觀和方法論。
(三)數(shù)學(xué)思想富有創(chuàng)造性
借助于分析與歸納、類比與聯(lián)想、猜想與驗(yàn)證等手段,可以使本來(lái)較抽象的結(jié)構(gòu)獲得相對(duì)直觀的形象的解釋,能使一些看似無(wú)處著手的問(wèn)題轉(zhuǎn)化成極具規(guī)律的數(shù)學(xué)模型。從而將一種關(guān)系結(jié)構(gòu)變成或映射成另一種關(guān)系結(jié)構(gòu),又可反演回來(lái),于是復(fù)雜問(wèn)題被簡(jiǎn)單化了,不能解的問(wèn)題的解找到了。如將著名的哥尼斯堡七橋問(wèn)題轉(zhuǎn)化成一筆畫(huà)問(wèn)題,便是典型的一例。當(dāng)時(shí),數(shù)學(xué)家們?cè)谧鬟@些探討時(shí)是很難的,是零零碎碎的,有時(shí)為了一個(gè)模型的建立,一種思想的概括,要付出畢生精力才能得到,這使后人能從中得到真知灼見(jiàn),體會(huì)到創(chuàng)造的艱辛,發(fā)展頑強(qiáng)奮戰(zhàn)的個(gè)性,培養(yǎng)創(chuàng)造的精神。
三、數(shù)學(xué)思想的教學(xué)功能
我國(guó)《九年義務(wù)教育全日制初級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱(試用修訂版)》明確指出:“初中數(shù)學(xué)的基礎(chǔ)知識(shí)主要是初中代數(shù)、幾何中的概念、法則、性質(zhì)、公式、公理、定理以及由其內(nèi)容所反映出來(lái)的數(shù)學(xué)思想和方法”。根據(jù)這一要求,在中學(xué)數(shù)學(xué)教學(xué)中必須大力加強(qiáng)對(duì)數(shù)學(xué)思想和方法的教學(xué)與研究。
(一)數(shù)學(xué)思想是教材體系的靈魂
從教材的構(gòu)成體系來(lái)看,整個(gè)初中數(shù)學(xué)教材所涉及的數(shù)學(xué)知識(shí)點(diǎn)匯成了數(shù)學(xué)結(jié)構(gòu)系統(tǒng)的兩條“河流”。一條是由具體的知識(shí)點(diǎn)構(gòu)成的易于被發(fā)現(xiàn)的“明河流”,它是構(gòu)成數(shù)學(xué)教材的“骨架”;另一條是由數(shù)學(xué)思想方法構(gòu)成的具有潛在價(jià)值的“暗河流”,它是構(gòu)成數(shù)學(xué)教材的“血脈”靈魂。有了這樣的數(shù)學(xué)思想作靈魂,各種具體的數(shù)學(xué)知識(shí)點(diǎn)才不再成為孤立的、零散的東西。因?yàn)閿?shù)學(xué)思想能將“游離”狀態(tài)的知識(shí)點(diǎn)(塊)凝結(jié)成優(yōu)化的知識(shí)結(jié)構(gòu),有了它,數(shù)學(xué)概念和命題才能活起來(lái),做到相互緊扣,相互支持,以組成一個(gè)有機(jī)的整體??梢?jiàn),數(shù)學(xué)思想是數(shù)學(xué)的內(nèi)在形式,是學(xué)生獲得數(shù)學(xué)知識(shí)、發(fā)展思維能力的動(dòng)力和工具。教師在教學(xué)中如能抓住數(shù)學(xué)思想這一主線,便能高屋建瓴,提挈教材進(jìn)行再創(chuàng)造,才能使教學(xué)見(jiàn)效快,收益大。
(二)數(shù)學(xué)思想是我們進(jìn)行教學(xué)設(shè)計(jì)的指導(dǎo)思想
筆者認(rèn)為,數(shù)學(xué)課堂教學(xué)設(shè)計(jì)應(yīng)分三個(gè)層次進(jìn)行,這便是宏觀設(shè)計(jì)、微觀設(shè)計(jì)和情境設(shè)計(jì)。無(wú)論哪個(gè)層次上的設(shè)計(jì),其目的都在于為了讓學(xué)生“參與”到獲得和發(fā)展真理性認(rèn)識(shí)的數(shù)學(xué)活動(dòng)過(guò)程中去。這種設(shè)計(jì)不能只是數(shù)學(xué)認(rèn)識(shí)過(guò)程中的“還原”,一定要有數(shù)學(xué)思想的飛躍和創(chuàng)造。這就是說(shuō),一個(gè)好的教學(xué)設(shè)計(jì),應(yīng)當(dāng)是歷史上數(shù)學(xué)思想發(fā)生、發(fā)展過(guò)程的模擬和簡(jiǎn)縮。例如初中階段的函數(shù)概念,便是概括了變量之間關(guān)系的簡(jiǎn)縮,也應(yīng)當(dāng)是滲透現(xiàn)代數(shù)學(xué)思想、使用現(xiàn)代手段實(shí)現(xiàn)的新的認(rèn)識(shí)過(guò)程。又如高中階段的函數(shù)概念,便滲透了集合關(guān)系的思想,還可以是在現(xiàn)實(shí)數(shù)學(xué)基礎(chǔ)上的概括和延伸,這就需要搞清楚應(yīng)概括怎樣的共性,如何準(zhǔn)確地提出新問(wèn)題,需要怎樣的新工具和新方法等等。對(duì)于這些問(wèn)題,都需要進(jìn)行預(yù)測(cè)和創(chuàng)造,而要順利地完成這一任務(wù),必須依靠數(shù)學(xué)思想作為指導(dǎo)。有了深刻的數(shù)學(xué)思想作指導(dǎo),才能做出智慧熠爍的創(chuàng)新設(shè)計(jì)來(lái),才能引發(fā)起學(xué)生的創(chuàng)造性的思維活動(dòng)來(lái)。這樣的教學(xué)設(shè)計(jì),才能適應(yīng)瞬息萬(wàn)變的技術(shù)革命的要求??恳回炄绱嗽O(shè)計(jì)的課堂教學(xué)培養(yǎng)出來(lái)的人才,方能在21世紀(jì)的激烈競(jìng)爭(zhēng)中立于不敗之地。
(三)數(shù)學(xué)思想是課堂教學(xué)質(zhì)量的重要保證
數(shù)學(xué)思想性高的教學(xué)設(shè)計(jì),是高質(zhì)量進(jìn)行教學(xué)的基本保證。在數(shù)學(xué)課堂教學(xué)中,教師面對(duì)的是幾十個(gè)學(xué)生,這幾十個(gè)智慧的頭腦會(huì)提出各種各樣的問(wèn)題。隨著新技術(shù)手段的現(xiàn)代化,學(xué)生知識(shí)面的拓寬,他們提出的許多問(wèn)題是教師難以解答的。面對(duì)這些活潑肯鉆研的學(xué)生所提的問(wèn)題,教師只有達(dá)到一定的思想深度,才能保證準(zhǔn)確辨別各種各樣問(wèn)題的癥結(jié),給出中肯的分析;才能恰當(dāng)適時(shí)地運(yùn)用類比聯(lián)想,給出生動(dòng)的陳述,把抽象的問(wèn)題形象化,復(fù)雜的問(wèn)題簡(jiǎn)單化;才能敏銳地發(fā)現(xiàn)學(xué)生的思想火花,找到閃光點(diǎn)并及時(shí)加以提煉升華,鼓勵(lì)學(xué)生大膽地進(jìn)行創(chuàng)造,把眾多學(xué)生牢牢地吸引住,并能積極主動(dòng)地參與到教學(xué)活動(dòng)中來(lái),真正成為教學(xué)過(guò)程的主體;也才能使有一定思想的教學(xué)設(shè)計(jì),真正變成高質(zhì)量的數(shù)學(xué)教學(xué)活動(dòng)過(guò)程。
2.豐富教學(xué)方法
由于實(shí)用經(jīng)濟(jì)數(shù)學(xué)教學(xué)的目的和特點(diǎn),就決定了運(yùn)用傳統(tǒng)的,比較單一的授課模式,即講授式,是不可能達(dá)到理想的教學(xué)目標(biāo)的。所以,在教學(xué)的過(guò)程中,要多種教學(xué)方法并用,尤其是能夠促進(jìn)學(xué)生思考,激起學(xué)生興趣的教學(xué)方式,如討論式教學(xué)法、啟發(fā)式教學(xué)法等等,對(duì)于實(shí)用經(jīng)濟(jì)數(shù)學(xué)教學(xué)中融入建模思想都是非常有益的。
3.改革學(xué)生成績(jī)?cè)u(píng)價(jià)機(jī)制,為社會(huì)輸送應(yīng)用型專門(mén)人才
由于當(dāng)下的教育中,對(duì)于考試成績(jī)的重視程度極高。然而,在實(shí)用經(jīng)濟(jì)數(shù)學(xué)的考試中,卻在很大程度上側(cè)重于推理以及推理過(guò)程中的計(jì)算。這就使得教師以及學(xué)生在教學(xué)以及學(xué)習(xí)的過(guò)程中都過(guò)度的重視推理與計(jì)算。所以要想提高數(shù)學(xué)建模思想的在課堂中的滲透,必須要改變學(xué)生的成績(jī)?cè)u(píng)價(jià)機(jī)制,從而為我國(guó)培養(yǎng)更多的具有高強(qiáng)度思維能力的人才。
4.加強(qiáng)師資隊(duì)伍建設(shè),培養(yǎng)應(yīng)用型專門(mén)數(shù)學(xué)教師
由于現(xiàn)在的經(jīng)濟(jì)數(shù)學(xué)教師在大學(xué)時(shí)接受的都是傳統(tǒng)的數(shù)學(xué)教育,依據(jù)他們現(xiàn)有的教育觀念和知識(shí)結(jié)構(gòu),很難真正實(shí)現(xiàn)上述三條措施,因此應(yīng)大力加強(qiáng)經(jīng)濟(jì)數(shù)學(xué)師資隊(duì)伍的建設(shè)。要加強(qiáng)教師的數(shù)學(xué)教育哲學(xué)、現(xiàn)代教育理論的學(xué)習(xí),從根本上轉(zhuǎn)變教師的數(shù)學(xué)教學(xué)觀,要專門(mén)培養(yǎng)一批精通數(shù)學(xué)建模方法和數(shù)學(xué)軟件的使用、掌握經(jīng)濟(jì)學(xué)基本知識(shí)、了解經(jīng)濟(jì)問(wèn)題。要想將數(shù)學(xué)建模思想很好的應(yīng)用在實(shí)用經(jīng)濟(jì)數(shù)學(xué)中,需要從教學(xué)的多個(gè)方面進(jìn)行考慮。然而,以上也僅僅是實(shí)用經(jīng)濟(jì)數(shù)學(xué)建模思想的幾個(gè)方面的探索,且這些研究都還比較淺顯。而僅僅憑借這些研究來(lái)提高實(shí)用經(jīng)濟(jì)數(shù)學(xué)的教學(xué)質(zhì)量,并且將數(shù)學(xué)建模思想很好的應(yīng)用在實(shí)用經(jīng)濟(jì)數(shù)學(xué)中,顯然是遠(yuǎn)遠(yuǎn)不夠的。所以,對(duì)于實(shí)用經(jīng)濟(jì)數(shù)學(xué)中融入數(shù)學(xué)建模思想的研究還需要數(shù)學(xué)教育領(lǐng)域的研究人士進(jìn)行進(jìn)一步的研究和思考。
小學(xué)數(shù)學(xué)教材是數(shù)學(xué)教學(xué)的顯性知識(shí)系統(tǒng),許多重要的法則、公式,教材中只能看到漂亮的結(jié)論,許多例題的解法,也只能看到巧妙的處理,而看不到由特殊實(shí)例的觀察、試驗(yàn)、分析、歸納、抽象概括或探索推理的心智活動(dòng)過(guò)程。因此,數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的隱性知識(shí)系統(tǒng),小學(xué)數(shù)學(xué)教學(xué)應(yīng)包括顯性和隱性兩方面知識(shí)的教學(xué)。如果教師在教學(xué)中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習(xí)這一傳統(tǒng)的教學(xué)過(guò)程,即使教師講深講透,并要求學(xué)生記住結(jié)論,掌握解題的類型和方法,這樣培養(yǎng)出來(lái)的學(xué)生也只能是“知識(shí)型”、“記憶型”的,將完全背離數(shù)學(xué)教育的目標(biāo)。
在認(rèn)知心理學(xué)里,思想方法屬于元認(rèn)知范疇,它對(duì)認(rèn)知活動(dòng)起著監(jiān)控、調(diào)節(jié)作用,對(duì)培養(yǎng)能力起著決定性的作用。學(xué)習(xí)數(shù)學(xué)的目的“就意味著解題”(波利亞語(yǔ)),解題關(guān)鍵在于找到合適的解題思路,數(shù)學(xué)思想方法就是幫助構(gòu)建解題思路的指導(dǎo)思想。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,提高學(xué)生的元認(rèn)知水平,是培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題能力的重要途徑。
數(shù)學(xué)知識(shí)本身是非常重要的,但它并不是惟一的決定因素,真正對(duì)學(xué)生以后的學(xué)習(xí)、生活和工作長(zhǎng)期起作用,并使其終生受益的是數(shù)學(xué)思想方法。未來(lái)社會(huì)將需要大量具有較強(qiáng)數(shù)學(xué)意識(shí)和數(shù)學(xué)素質(zhì)的人才。21世紀(jì)國(guó)際數(shù)學(xué)教育的根本目標(biāo)就是“問(wèn)題解決”。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是未來(lái)社會(huì)的要求和國(guó)際數(shù)學(xué)教育發(fā)展的必然結(jié)果。
小學(xué)數(shù)學(xué)教學(xué)的根本任務(wù)是全面提高學(xué)生素質(zhì),其中最重要的因素是思維素質(zhì),而數(shù)學(xué)思想方法就是增強(qiáng)學(xué)生數(shù)學(xué)觀念,形成良好思維素質(zhì)的關(guān)鍵。如果將學(xué)生的數(shù)學(xué)素質(zhì)看作一個(gè)坐標(biāo)系,那么數(shù)學(xué)知識(shí)、技能就好比橫軸上的因素,而數(shù)學(xué)思想方法就是縱軸的內(nèi)容。淡化或忽視數(shù)學(xué)思想方法的教學(xué),不僅不利于學(xué)生從縱橫兩個(gè)維度上把握數(shù)學(xué)學(xué)科的基本結(jié)構(gòu),也必將影響其能力的發(fā)展和數(shù)學(xué)素質(zhì)的提高。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是數(shù)學(xué)教學(xué)改革的新視角,是進(jìn)行數(shù)學(xué)素質(zhì)教育的突破口。
二、小學(xué)數(shù)學(xué)教學(xué)中應(yīng)滲透哪些數(shù)學(xué)思想方法
古往今來(lái),數(shù)學(xué)思想方法不計(jì)其數(shù),每一種數(shù)學(xué)思想方法都閃爍著人類智慧的火花。一則由于小學(xué)生的年齡特點(diǎn)決定有些數(shù)學(xué)思想方法他們不易接受,二則要想把那么多的數(shù)學(xué)思想方法滲透給小學(xué)生也是不大現(xiàn)實(shí)的。因此,我們應(yīng)該有選擇地滲透一些數(shù)學(xué)思想方法。筆者認(rèn)為,以下幾種數(shù)學(xué)思想方法學(xué)生不但容易接受,而且對(duì)學(xué)生數(shù)學(xué)能力的提高有很好的促進(jìn)作用。
1.化歸思想
化歸思想是把一個(gè)實(shí)際問(wèn)題通過(guò)某種轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問(wèn)題,把一個(gè)較復(fù)雜的問(wèn)題轉(zhuǎn)化、歸結(jié)為一個(gè)較簡(jiǎn)單的問(wèn)題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。
例1狐貍和黃鼠狼進(jìn)行跳躍比賽,狐貍每次可向前跳41/2米,黃鼠狼每次可向前跳23/4米。它們每秒種都只跳一次。比賽途中,從起點(diǎn)開(kāi)始,每隔123/8米設(shè)有一個(gè)陷阱,當(dāng)它們之中有一個(gè)掉進(jìn)陷阱時(shí),另一個(gè)跳了多少米?
這是一個(gè)實(shí)際問(wèn)題,但通過(guò)分析知道,當(dāng)狐貍(或黃鼠狼)第一次掉進(jìn)陷阱時(shí),它所跳過(guò)的距離即是它每次所跳距離41/2(或23/4)米的整倍數(shù),又是陷阱間隔123/8米的整倍數(shù),也就是41/2和123/8的“最小公倍數(shù)”(或23/4和123/8的“最小公倍數(shù)”)。針對(duì)兩種情況,再分別算出各跳了幾次,確定誰(shuí)先掉入陷阱,問(wèn)題就基本解決了。上面的思考過(guò)程,實(shí)質(zhì)上是把一個(gè)實(shí)際問(wèn)題通過(guò)分析轉(zhuǎn)化、歸結(jié)為一個(gè)求“最小公倍數(shù)”的問(wèn)題,即把一個(gè)實(shí)際問(wèn)題轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問(wèn)題,這種化歸思想正是數(shù)學(xué)能力的表現(xiàn)之一。
2.數(shù)形結(jié)合思想
數(shù)形結(jié)合思想是充分利用“形”把一定的數(shù)量關(guān)系形象地表示出來(lái)。即通過(guò)作一些如線段圖、樹(shù)形圖、長(zhǎng)方形面積圖或集合圖來(lái)幫助學(xué)生正確理解數(shù)量關(guān)系,使問(wèn)題簡(jiǎn)明直觀。
例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
附圖{圖}
此題若把五次所喝的牛奶加起來(lái),即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫(huà)一個(gè)正方形,并假設(shè)它的面積為單位“1”,由圖可知,1-1/32就為所求,這里不但向?qū)W生滲透了數(shù)形結(jié)合思想,還向?qū)W生滲透了類比的思想。
3.變換思想
變換思想是由一種形式轉(zhuǎn)變?yōu)榱硪环N形式的思想。如解方程中的同解變換,定律、公式中的命題等價(jià)變換,幾何形體中的等積變換,理解數(shù)學(xué)問(wèn)題中的逆向變換等等。
例3求1/2+1/6+1/12+1/20+……+1/380的和。
仔細(xì)觀察這些分母,不難發(fā)現(xiàn):2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考慮和式中的一般項(xiàng)
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,問(wèn)題轉(zhuǎn)換為如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.組合思想
組合思想是把所研究的對(duì)象進(jìn)行合理的分組,并對(duì)可能出現(xiàn)的各種情況既不重復(fù)又不遺漏地一一求解。
例4在下面的乘法算式中,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字,求這個(gè)算式。
從小愛(ài)數(shù)學(xué)
×4
──────
學(xué)數(shù)愛(ài)小從
分析:由于五位數(shù)乘以4的積還是五位數(shù),所以被乘數(shù)的首位數(shù)字“從”只能是1或2,但如果“從”=1,“學(xué)”×4的積的個(gè)位應(yīng)是1,“學(xué)”無(wú)解。所以“從”=2。
在個(gè)位上,“學(xué)”×4的積的個(gè)位是2,“學(xué)”=3或8。但由于“學(xué)”又是積的首位數(shù)字,必須大于或等于8,所以“學(xué)”=8。
在千位上,由于“小”×4不能再向萬(wàn)位進(jìn)位,所以“小”=1或0。若“小”=0,則十位上“數(shù)”×4+3(進(jìn)位)的個(gè)位是0,這不可能,所以“小”=1。
在十位上,“數(shù)”×4+3(進(jìn)位)的個(gè)位是1,推出“數(shù)”=7。
在百位上,“愛(ài)”×4+3(進(jìn)位)的個(gè)位還是“愛(ài)”,且百位必須向千位進(jìn)3,所以“愛(ài)”=9。
故欲求乘法算式為
21978
×4
──────
87912
上面這種分類求解方法既不重復(fù),又不遺漏,體現(xiàn)了組合思想。
此外,還有符號(hào)思想、對(duì)應(yīng)思想、極限思想、集合思想等,在小學(xué)數(shù)學(xué)教學(xué)中都應(yīng)注意有目的、有選擇、適時(shí)地進(jìn)行滲透。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
1.提高滲透的自覺(jué)性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫(xiě)在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,并且不成體系地散見(jiàn)于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時(shí)間緊而將它作為一個(gè)“軟任務(wù)”擠掉。對(duì)于學(xué)生的要求是能領(lǐng)會(huì)多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。
2.把握滲透的可行性
一、歷史的回顧
我國(guó)的中學(xué)數(shù)學(xué)教學(xué)大綱,對(duì)于數(shù)學(xué)思想和數(shù)學(xué)方法的重要性的認(rèn)識(shí)也有一個(gè)從低到高的過(guò)程。
由中華人民共和國(guó)教育部制訂、1978年2月第1版的《全日制十年制學(xué)校中學(xué)數(shù)學(xué)教學(xué)大綱(試行草案)》,在第2頁(yè)“教學(xué)內(nèi)容的確定”的第(三)條中首次指出:“把集合、對(duì)應(yīng)等思想適當(dāng)滲透到教材中去,這樣,有利于加深理解有關(guān)教材,同時(shí)也為進(jìn)一步學(xué)習(xí)作準(zhǔn)備?!边@一大綱在1980年5月第2版時(shí)維持了上述規(guī)定。
由中華人民共和國(guó)國(guó)家教育委員會(huì)制訂、1986年12月第1版的《全日制中學(xué)數(shù)學(xué)教學(xué)大綱》,在第2頁(yè)“教學(xué)內(nèi)容的確定”的第(三)條中,把上述大綱的有關(guān)文字改成一句話:“適當(dāng)滲透集合、對(duì)應(yīng)等數(shù)學(xué)思想”。1990年修訂此大綱時(shí),維持了這一規(guī)定。
由中華人民共和國(guó)國(guó)家教育委員會(huì)制訂、1992年6月第1版的《九年義務(wù)教育全日制初級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱(試用)》,在第1頁(yè)“教學(xué)目的”中規(guī)定:“初中數(shù)學(xué)的基礎(chǔ)知識(shí)主要是初中代數(shù)、幾何中的概念、法則、性質(zhì)、公式、公理、定理以及由其內(nèi)容所反映出來(lái)的數(shù)學(xué)思想和方法?!边@份大綱還第一次把資深的數(shù)學(xué)工作者們熟知的提法“數(shù)學(xué),它的內(nèi)容、方法和意義”改為數(shù)學(xué)的“內(nèi)容、思想、方法和語(yǔ)言已廣泛滲入自然科學(xué)和社會(huì)科學(xué),成為現(xiàn)代文化的重要組成部分”,并把這段話放入總論的第一段。在第9頁(yè)上又指出,要“使學(xué)生掌握消元、降次、配方、換元等常用的數(shù)學(xué)方法,解決某些數(shù)學(xué)問(wèn)題,理解‘特殊棗一般棗特殊’、‘未知棗已知’、用字母表示數(shù)、數(shù)形結(jié)合和把復(fù)雜問(wèn)題轉(zhuǎn)化成簡(jiǎn)單問(wèn)題等基本的思想方法”;在第6頁(yè)上還指出,“要注意充分發(fā)揮練習(xí)的作用,加強(qiáng)對(duì)解題的正確指導(dǎo),應(yīng)注意引導(dǎo)學(xué)生從解題的思想方法上作必要的概括?!豹?/p>
由國(guó)家教育委員會(huì)基礎(chǔ)教育司編訂、1996年5月第1版的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱(供試驗(yàn)用)》,在第2頁(yè)“教學(xué)目的”中也規(guī)定:“高中數(shù)學(xué)的基礎(chǔ)知識(shí)是指:高中數(shù)學(xué)中的概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映出來(lái)的數(shù)學(xué)思想和方法?!痹诮缍ā八季S能力”一詞的四個(gè)主要層面時(shí),指出第三層面是“會(huì)合乎邏輯地、準(zhǔn)確地闡述自己的思想和觀點(diǎn)”;第四層面是“能運(yùn)用數(shù)學(xué)概念、思想和方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì)”。這份大綱維持了數(shù)學(xué)的“內(nèi)容、思想、方法和語(yǔ)言已成為現(xiàn)代文化的重要組成部分”的提法(第1頁(yè));并指出數(shù)學(xué)規(guī)律“包括公理、性質(zhì)、法則、公式、定理及其聯(lián)系,數(shù)學(xué)思想、方法和語(yǔ)言”(第24頁(yè));堅(jiān)持在對(duì)解題進(jìn)行指導(dǎo)時(shí),應(yīng)該“對(duì)解題的思想方法作必要的概括”(第25頁(yè))。這是建國(guó)以來(lái)對(duì)數(shù)學(xué)思想和數(shù)學(xué)方法關(guān)注最多的一份中學(xué)數(shù)學(xué)教學(xué)大綱,充分體現(xiàn)了數(shù)學(xué)教育工作者對(duì)于數(shù)學(xué)課程發(fā)展的一些共識(shí)。
二、數(shù)學(xué)思想方法
(一)思想、科學(xué)思想和數(shù)學(xué)思想
思想是客觀存在反映在人的意識(shí)中經(jīng)過(guò)思維活動(dòng)而產(chǎn)生的結(jié)果。它是從大量的思維活動(dòng)中獲得的產(chǎn)物,經(jīng)過(guò)反復(fù)提煉和實(shí)踐,如果一再被證明為正確,就可以反復(fù)被應(yīng)用到新的思維活動(dòng)中,并產(chǎn)生出新的結(jié)果。本文所指的思想,都是那些顛撲不破、屢試不爽的思維產(chǎn)物。因此,對(duì)于學(xué)習(xí)者來(lái)說(shuō),思想就成為他們進(jìn)行思維活動(dòng)的細(xì)胞和基礎(chǔ);思想和下面述及的方法都是他們的思維活動(dòng)的載體。每門(mén)科學(xué)都逐漸形成了它自己的思想,而科學(xué)法則概括出各門(mén)科學(xué)共同遵循和運(yùn)用的一些科學(xué)思想。
所謂數(shù)學(xué)思想,是指現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系反映到人的意識(shí)之中,經(jīng)過(guò)思維活動(dòng)而產(chǎn)生的結(jié)果,它是對(duì)數(shù)學(xué)事實(shí)與數(shù)學(xué)理論的本質(zhì)認(rèn)識(shí)。首先,數(shù)學(xué)思想比一般說(shuō)的數(shù)學(xué)概念具有更高的抽象和概括水平,后者比前者更具體、更豐富,而前者比后者更本質(zhì)、更深刻。其次,數(shù)學(xué)思想、數(shù)學(xué)觀點(diǎn)、數(shù)學(xué)方法三者密不可分:如果人們站在某個(gè)位置、從某個(gè)角度并運(yùn)用數(shù)學(xué)去觀察和思考問(wèn)題,那么數(shù)學(xué)思想也就成了一種觀點(diǎn)。而對(duì)于數(shù)學(xué)方法來(lái)說(shuō),思想是其相應(yīng)的方法的精神實(shí)質(zhì)和理論基礎(chǔ),方法則是實(shí)施有關(guān)思想的技術(shù)手段。中學(xué)數(shù)學(xué)中出現(xiàn)的數(shù)學(xué)觀點(diǎn)(例如方程觀點(diǎn)、函數(shù)觀點(diǎn)、統(tǒng)計(jì)觀點(diǎn)、向量觀點(diǎn)、幾何變換觀點(diǎn)等)和各種數(shù)學(xué)方法,都體現(xiàn)著一定的數(shù)學(xué)思想。
數(shù)學(xué)思想是一類科學(xué)思想,但科學(xué)思想未必就單單是數(shù)學(xué)思想。例如,分類思想是各門(mén)科學(xué)都要運(yùn)用的思想(比方語(yǔ)文分為文學(xué)、語(yǔ)言和寫(xiě)作,外語(yǔ)分為聽(tīng)、說(shuō)、讀、寫(xiě)和譯,物理學(xué)分為力學(xué)、熱學(xué)、聲學(xué)、電學(xué)、光學(xué)和原子核物理學(xué),化學(xué)分為無(wú)機(jī)化學(xué)和有機(jī)化學(xué),生物學(xué)分為植物學(xué)、動(dòng)物學(xué)和人類學(xué)等;中學(xué)生見(jiàn)到的最漂亮的分類應(yīng)該是在學(xué)習(xí)哺乳綱動(dòng)物時(shí)所出現(xiàn)的門(mén)(亞門(mén))、綱(亞綱)、目(亞目)、屬、科、種的分類表,它不是單由數(shù)學(xué)給予的。只有將分類思想應(yīng)用于空間形式和數(shù)量關(guān)系時(shí),才能成為數(shù)學(xué)思想。如果用一個(gè)詞語(yǔ)“邏輯劃分”作為標(biāo)準(zhǔn),那么,當(dāng)該邏輯劃分與數(shù)理有關(guān)時(shí)(可稱之為“數(shù)理邏輯劃分”),可以說(shuō)是運(yùn)用數(shù)學(xué)思想;當(dāng)該邏輯劃分與數(shù)理無(wú)直接關(guān)系時(shí)(例如把社會(huì)中的各行各業(yè)分為工、農(nóng)、兵、學(xué)、商等),不應(yīng)該說(shuō)是運(yùn)用數(shù)學(xué)思想。同樣地,當(dāng)且僅當(dāng)哲學(xué)思想(例如一分為二的思想、量質(zhì)互變的思想和肯定否定的思想)在數(shù)學(xué)中予以大量運(yùn)用并且被“數(shù)學(xué)化”了時(shí),它們也可以稱之為數(shù)學(xué)思想。
(二)數(shù)學(xué)思想中的基本數(shù)學(xué)思想
在數(shù)學(xué)思想中,有一類思想是體現(xiàn)或應(yīng)該體現(xiàn)于基礎(chǔ)數(shù)學(xué)中的具有奠基性和總結(jié)性的思維成果,這些思想可以稱之為基本數(shù)學(xué)思想。基本數(shù)學(xué)思想含有傳統(tǒng)數(shù)學(xué)思想的精華和近現(xiàn)代數(shù)學(xué)思想的基本特征,并且也是歷史地形成和發(fā)展著的。
基本數(shù)學(xué)思想包括:符號(hào)與變?cè)硎镜乃枷耄纤枷?,?duì)應(yīng)思想,公理化與結(jié)構(gòu)思想,數(shù)形結(jié)合的思想,化歸的思想,對(duì)立統(tǒng)一的思想,整體思想,函數(shù)與方程的思想,抽樣統(tǒng)計(jì)思想,極限思想(或說(shuō)無(wú)限逼近思想)等。它有兩大“基石”棗符號(hào)與變?cè)硎镜乃枷牒图纤枷?,又有兩大“支柱”棗?duì)應(yīng)思想和公理化與結(jié)構(gòu)思想。有些基本數(shù)學(xué)思想是從“基石”和“支柱”衍生出來(lái)的,例如“函數(shù)與方程的思想”衍生于符號(hào)與變?cè)硎镜乃枷?函數(shù)式或方程式)、集合思想(函數(shù)的定義域或方程中字母的取值范圍)和對(duì)應(yīng)思想(函數(shù)的對(duì)應(yīng)法則或方程中已知數(shù)、未知數(shù)的值的對(duì)應(yīng)關(guān)系)。所以我們說(shuō)基本數(shù)學(xué)思想是體現(xiàn)或應(yīng)該體現(xiàn)于“基礎(chǔ)數(shù)學(xué)”(而不是說(shuō)“初等數(shù)學(xué)”)的具有奠基性和總結(jié)性的思維成果?;緮?shù)學(xué)思想及其衍生的數(shù)學(xué)思想,形成了一個(gè)結(jié)構(gòu)性很強(qiáng)的網(wǎng)絡(luò)。中學(xué)數(shù)學(xué)教育、教學(xué)中傳授的數(shù)學(xué)思想,應(yīng)該都是基本數(shù)學(xué)思想。
非科學(xué)思想當(dāng)然也是大量存在的。例如,“崇洋”的思想就是一種非科學(xué)思想。
中學(xué)數(shù)學(xué)教科書(shū)中處處滲透著基本數(shù)學(xué)思想。如果能使它落實(shí)到學(xué)生學(xué)習(xí)和運(yùn)用數(shù)學(xué)的思維活動(dòng)上,它就能在發(fā)展學(xué)生的數(shù)學(xué)能力方面發(fā)揮出一種方法論的功能。
(三)思路、思緒和思考
我們?cè)谥袑W(xué)數(shù)學(xué)教育、教學(xué)中,還經(jīng)常使用著“思路”和“思緒”這兩個(gè)詞語(yǔ)。一般說(shuō)來(lái),“思路”是指思維活動(dòng)的線索,可視為以串聯(lián)、并聯(lián)或網(wǎng)絡(luò)形狀出現(xiàn)的思想和方法的載體,而“思緒”是指思想的頭緒?!八悸贰焙汀八季w”實(shí)際上是同義詞,并且它們都是名詞。
那么,另一個(gè)詞語(yǔ)“思考”又是什么意思呢?“思考”就是進(jìn)行比較深刻、周到的思維活動(dòng)。作為動(dòng)詞,它反映了主體把思想、方法、串聯(lián)、并聯(lián)或用網(wǎng)絡(luò)組織起來(lái)以解決問(wèn)題的思維過(guò)程。由此可見(jiàn),“思考”所產(chǎn)生的有效途徑就是“思路”或“思緒”;“思路”或“思緒”是“思考”的結(jié)果,是思想、方法的某種選擇和組織,且明顯帶有程序性。對(duì)思路及其所含思想、方法的選擇和組織的水平,反映了學(xué)習(xí)者能力的差異。(四)方法和數(shù)學(xué)方法
所謂方法,是指人們?yōu)榱诉_(dá)到某種目的而采取的手段、途徑和行為方式中所包含的可操作的規(guī)則或模式。人們通過(guò)長(zhǎng)期的實(shí)踐,發(fā)現(xiàn)了許多運(yùn)用數(shù)學(xué)思想的手段、門(mén)路或程序。同一手段、門(mén)路或程序被重復(fù)運(yùn)用了多次,并且都達(dá)到了預(yù)期的目的,便成為數(shù)學(xué)方法。數(shù)學(xué)方法是以數(shù)學(xué)為工具進(jìn)行科學(xué)研究的方法,即用數(shù)學(xué)語(yǔ)言表達(dá)事物的狀態(tài)、關(guān)系和過(guò)程,經(jīng)過(guò)推導(dǎo)、運(yùn)算和分析,以形成解釋、判斷和預(yù)言的方法。
數(shù)學(xué)方法具有以下三個(gè)基本特征:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴(yán)密性及結(jié)論的確定性;三是應(yīng)用的普遍性和可操作性。
數(shù)學(xué)方法在科學(xué)技術(shù)研究中具有舉足輕重的地位和作用:一是提供簡(jiǎn)潔精確的形式化語(yǔ)言,二是提供數(shù)量分析及計(jì)算的方法,三是提供邏輯推理的工具?,F(xiàn)代科學(xué)技術(shù)特別是電腦的發(fā)展,與數(shù)學(xué)方法的地位和作用的強(qiáng)化正好是相輔相成。
宏觀的數(shù)學(xué)方法包括:模型方法,變換方法,對(duì)稱方法,無(wú)窮小方法,公理化方法,結(jié)構(gòu)方法,實(shí)驗(yàn)方法。微觀的且在中學(xué)數(shù)學(xué)中常用的基本數(shù)學(xué)方法大致可以分為以下三類:
(1)邏輯學(xué)中的方法。例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等。這些方法既要遵從邏輯學(xué)中的基本規(guī)律和法則,又因運(yùn)用于數(shù)學(xué)之中而具有數(shù)學(xué)的特色。
(2)數(shù)學(xué)中的一般方法。例如建模法、消元法、降次法、代入法、圖象法(也稱坐標(biāo)法。代數(shù)中常用圖象法,解析幾何中常用坐標(biāo)法)、向量法、比較法(數(shù)學(xué)中主要是指比較大小,這與邏輯學(xué)中的多方位比較不同)、放縮法、同一法、數(shù)學(xué)歸納法(這與邏輯學(xué)中的不完全歸納法不同)等。這些方法極為重要,應(yīng)用也很廣泛。
(3)數(shù)學(xué)中的特殊方法。例如配方法、待定系數(shù)法、加減法、公式法、換元法(也稱之為中間變量法)、拆項(xiàng)補(bǔ)項(xiàng)法(含有添加輔助元素實(shí)現(xiàn)化歸的數(shù)學(xué)思想)、因式分解諸方法,以及平行移動(dòng)法、翻折法等。這些方法在解決某些數(shù)學(xué)問(wèn)題時(shí)起著重要作用,不可等閑視之。
(五)方法和招術(shù)
如上所述,方法是解決思想、行為等問(wèn)題的門(mén)路和程序,是思想的產(chǎn)物,是包含或體現(xiàn)著思想的一套程序,它既可操作又可仿效。在選擇并實(shí)施方法的前期過(guò)程中,反映了學(xué)習(xí)者的能力和技能的高低;而在后期過(guò)程中,只反映了學(xué)習(xí)者的技能的差異。
所謂“招術(shù)”“招”字應(yīng)正為“著”字,本文仍用傳統(tǒng)的“一招一式”的說(shuō)法。是指解決特殊問(wèn)題的專用計(jì)策或手段,純屬于技能而不屬于能力。“招”的教育價(jià)值遠(yuǎn)低于“法”(這里的“法”指“通法”)的價(jià)值?!胺ā钡目煞滦詭в休^為“普適”的意義,而“招”的“普適”要差得多;實(shí)施“招”要以能實(shí)施管著它的“法”為前提。
例如,待定系數(shù)法是一種特別有用的“法”。求二次函數(shù)的解析式時(shí),用待定系數(shù)法根據(jù)圖象上三個(gè)點(diǎn)的坐標(biāo)求出解析式可看作第一“招”;根據(jù)頂點(diǎn)和另一點(diǎn)的坐標(biāo)求出解析式可看作第二“招”;根據(jù)與x軸交點(diǎn)和另一點(diǎn)的坐標(biāo)求出解析式可看作第三“招”。這三“招”各有奇妙之處。哪一“招”更好使用,要看條件和管著它們的“法”而定。教師授予學(xué)生“用待定系數(shù)法求二次函數(shù)的解析式”,最根本、最要緊的“法旨”就在于讓學(xué)生明確二次函數(shù)的解析式中自變量、函數(shù)值和圖象上點(diǎn)的橫、縱坐標(biāo)的對(duì)應(yīng)關(guān)系;對(duì)于一般的點(diǎn)和特殊的點(diǎn)(例如頂點(diǎn)及與x軸的交點(diǎn)),解析式可以有什么不同的反映。而這樣的“法旨”,恰恰體現(xiàn)了對(duì)應(yīng)思想和數(shù)形結(jié)合的思想。由此看來(lái),我國(guó)古代傳說(shuō)中經(jīng)常提到的某些師傅對(duì)待弟子“給‘招’不給‘法’”的現(xiàn)象,在現(xiàn)代的數(shù)學(xué)教育、教學(xué)中應(yīng)該盡量避免。
三、中學(xué)數(shù)學(xué)教科書(shū)中應(yīng)該傳授的基本數(shù)學(xué)思想和方法
(一)中學(xué)數(shù)學(xué)教科書(shū)中應(yīng)該傳授的基本數(shù)學(xué)思想中學(xué)數(shù)學(xué)教科書(shū)擔(dān)負(fù)著向?qū)W生傳授基本數(shù)學(xué)思想的責(zé)任,在程度上有“滲透”、“介紹”和“突出”之分。1.滲透。“滲透”就是把某些抽象的數(shù)學(xué)思想逐漸“融進(jìn)”具體的、實(shí)在的數(shù)學(xué)知識(shí)中,使學(xué)生對(duì)這些思想有一些初步的感知或直覺(jué),但還沒(méi)有從理性上開(kāi)始認(rèn)識(shí)它們。要滲透的有集合思想、對(duì)應(yīng)思想、公理化與結(jié)構(gòu)思想、抽樣統(tǒng)計(jì)思想、極限思想等。前三種基本數(shù)學(xué)思想從初中一年級(jí)就開(kāi)始滲透了,并貫徹于整個(gè)中學(xué)階段;抽樣統(tǒng)計(jì)思想可從初中三年級(jí)開(kāi)始滲透,極限思想也可從初中三年級(jí)的教科書(shū)中安排類似于“關(guān)于圓周率π”這樣的閱讀材料開(kāi)始滲透。至于公理化與結(jié)構(gòu)思想,要注意根據(jù)人類的認(rèn)識(shí)規(guī)律,一開(kāi)始就采取擴(kuò)大的公理體系。例如,教科書(shū)既可以把“同位角相等,兩直線平行”和它的逆命題都當(dāng)作公理,也可以把判定兩個(gè)三角形全等的三個(gè)命題“邊角邊”、“角邊角”和“邊邊邊”都當(dāng)作公理。
這種滲透是隨年級(jí)逐步深入的。例如集合思想,初中是用文氏圖或列舉法來(lái)表示集合,不等式(組)的解集可以用數(shù)軸表示或用不等式(組)表示;高中則是列舉法、描述法、文氏圖三者并舉,并同時(shí)允許用不等式(組)、區(qū)間或集合的描述法來(lái)表示實(shí)數(shù)集的某些子集。又如對(duì)應(yīng)思想,初中只用文字、數(shù)軸或平面直角坐標(biāo)系來(lái)講對(duì)應(yīng);高中則在此基礎(chǔ)上引入了使用符號(hào)語(yǔ)言的對(duì)應(yīng)法則。至于公理化與結(jié)構(gòu)思想、抽樣統(tǒng)計(jì)思想和極限思想在初、高中階段的不同滲透水平,則是眾所周知的?!皾B透”到一定程度,就是“介紹”的前奏了。
2.介紹。“介紹”就是把某些數(shù)學(xué)思想在適當(dāng)時(shí)候明確“引進(jìn)”到數(shù)學(xué)知識(shí)中,使學(xué)生對(duì)這些思想有初步理解,這是理性認(rèn)識(shí)的開(kāi)始。要介紹的有符號(hào)與變?cè)硎镜乃枷搿?shù)形結(jié)合的思想、化歸的思想、函數(shù)與方程的思想、抽樣統(tǒng)計(jì)思想、極限思想等。這種介紹也是隨年級(jí)逐步增加的。有的思想從初中一年級(jí)起就開(kāi)始介紹(例如前四種基本數(shù)學(xué)思想),有的則是先滲透后介紹(例如后兩種基本數(shù)學(xué)思想)?!敖榻B”與“滲透”的基本區(qū)別在于:“滲透”只要求學(xué)生知道有什么思想和是什么思想,而“介紹”則要求學(xué)生在此基礎(chǔ)上進(jìn)而知道為什么叫做思想(含思想的要素和特征)、用什么思想(含思想的用途)并學(xué)會(huì)運(yùn)用。作為補(bǔ)充,也可以就問(wèn)題適時(shí)地向?qū)W生介紹如何運(yùn)用一分為二的思想和整體思想。
3.突出?!巴怀觥本褪前涯承?shù)學(xué)思想經(jīng)常性地予以強(qiáng)調(diào),并通過(guò)大量的綜合訓(xùn)練而達(dá)到靈活運(yùn)用。它是在介紹的基礎(chǔ)上進(jìn)行的,目的在于最大限度地發(fā)揮這些數(shù)學(xué)思想的功能。要突出的有數(shù)形結(jié)合的思想、化歸的思想、函數(shù)與方程的思想等。這些基本數(shù)學(xué)思想貫穿于整個(gè)中學(xué)階段,最重要、最常用,是中學(xué)數(shù)學(xué)的精髓,也最能長(zhǎng)久保存在人一生的記憶之中?!敖榻B”與“突出”的基本區(qū)別在于:“介紹”只要求學(xué)生知道用什么和會(huì)用,而“突出”則要求學(xué)生在此基礎(chǔ)上進(jìn)而知道選用和善用。作為補(bǔ)充,也可以就數(shù)學(xué)問(wèn)題經(jīng)常向?qū)W生突出分類思想的運(yùn)用。