伊人色婷婷综在合线亚洲,亚洲欧洲免费视频,亚洲午夜视频在线观看,最新国产成人盗摄精品视频,日韩激情视频在线观看,97公开免费视频,成人激情视频在线观看,成人免费淫片视频男直播,青草青草久热精品视频99

數(shù)學(xué)應(yīng)用能力培養(yǎng)分析3篇

時(shí)間:2022-12-21 10:20:59

導(dǎo)言:作為寫作愛(ài)好者,不可錯(cuò)過(guò)為您精心挑選的1篇數(shù)學(xué)應(yīng)用能力培養(yǎng)分析3篇,它們將為您的寫作提供全新的視角,我們衷心期待您的閱讀,并希望這些內(nèi)容能為您提供靈感和參考。

數(shù)學(xué)應(yīng)用能力培養(yǎng)分析3篇

數(shù)學(xué)應(yīng)用能力培養(yǎng)分析1

《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》對(duì)數(shù)學(xué)知識(shí)點(diǎn)做了小幅增刪,小學(xué)階段取消了“簡(jiǎn)易方程”,加強(qiáng)了對(duì)基本概念的感悟和符號(hào)意識(shí)的培養(yǎng)[1]。這個(gè)刪減必然會(huì)對(duì)初中數(shù)學(xué)方程應(yīng)用教學(xué)帶來(lái)影響。數(shù)學(xué)建模能力作為數(shù)學(xué)核心素養(yǎng)的重要方面之一,對(duì)學(xué)生的數(shù)學(xué)學(xué)習(xí)具有重要的影響,尤其是在錯(cuò)綜復(fù)雜的數(shù)學(xué)問(wèn)題求解中,通過(guò)建模可以簡(jiǎn)化問(wèn)題求解步驟,激發(fā)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,感受數(shù)學(xué)的魅力。教師在教學(xué)中要強(qiáng)化培養(yǎng)學(xué)生的數(shù)學(xué)建模思維,并以該思維求解決具體的數(shù)學(xué)應(yīng)用題,推動(dòng)課堂教學(xué)內(nèi)容的實(shí)踐轉(zhuǎn)化,提升數(shù)學(xué)方程應(yīng)用教學(xué)的質(zhì)量和效率[2]。初中數(shù)學(xué)方程建模旨在對(duì)既有知識(shí)點(diǎn)構(gòu)筑數(shù)學(xué)模型,提升學(xué)生數(shù)學(xué)問(wèn)題求解能力。對(duì)此,數(shù)學(xué)教師要認(rèn)真思考初中階段如何培養(yǎng)學(xué)生的數(shù)學(xué)方程建模能力,以便滲透數(shù)學(xué)應(yīng)用意識(shí)。數(shù)學(xué)方程建模的過(guò)程,是實(shí)踐和理論融合的過(guò)程,也扎實(shí)學(xué)生對(duì)相關(guān)數(shù)學(xué)問(wèn)題和數(shù)學(xué)知識(shí)的學(xué)習(xí),讓其更好地領(lǐng)會(huì)教學(xué)思想及其蘊(yùn)含的數(shù)學(xué)求解策略。數(shù)學(xué)方程建模教學(xué)的開展,可培養(yǎng)學(xué)生在數(shù)學(xué)問(wèn)題的求解中,以“建模思想”來(lái)解決非數(shù)學(xué)語(yǔ)言問(wèn)題;并在合作交流乃至創(chuàng)造性實(shí)踐中,進(jìn)一步發(fā)揮學(xué)生的參與意識(shí)和參與熱情。

一、初中生方程應(yīng)用建模方面存在的問(wèn)題

雖然小學(xué)的簡(jiǎn)易列方程解應(yīng)用題為學(xué)生初中學(xué)習(xí)方程及其應(yīng)用做良好的鋪墊,但是還不夠。初中一元一次方程、二元一次方程(組)及二元一次方程貫穿整個(gè)初中三年基本應(yīng)用題、綜合題,是提高學(xué)生的思維能力、數(shù)學(xué)應(yīng)用和創(chuàng)新能力的重要途徑。初中生在列方程解應(yīng)用題建模方面有如下三點(diǎn)困難:其一,生活經(jīng)驗(yàn)的不足或者生活經(jīng)驗(yàn)與數(shù)學(xué)完全脫離。不少學(xué)生過(guò)著衣來(lái)伸手飯來(lái)張口的生活,對(duì)數(shù)學(xué)應(yīng)用及概念經(jīng)驗(yàn)缺乏感知,因此遇到以生活實(shí)際為背景的應(yīng)用問(wèn)題毫無(wú)頭緒、無(wú)從下手。他們不知道如何梳理問(wèn)題中的有效信息及數(shù)量關(guān)系,也不知道如何靈活地運(yùn)用數(shù)學(xué)公式。其二,閱讀文字和理解文字能力的欠缺。這是初中學(xué)生解應(yīng)用題難的另一因素。由于大多數(shù)學(xué)生缺乏認(rèn)真閱讀題目的耐心和細(xì)心,對(duì)題干感悟和理解層次不足,尤其是遇到文字量較大的應(yīng)用題,學(xué)生很容易視覺(jué)疲憊,分不清文字的主次,抓不住文中的關(guān)鍵字眼。其三,方法和技巧的欠缺。學(xué)生在平時(shí)的學(xué)習(xí)過(guò)程中,重結(jié)果輕過(guò)程,沒(méi)有深刻地理解問(wèn)題的本質(zhì),也沒(méi)有把所學(xué)知識(shí)進(jìn)行歸類總結(jié)、轉(zhuǎn)化為數(shù)學(xué)模型。因此,學(xué)生選擇問(wèn)題的分析方法時(shí)不夠靈活和大膽,分析問(wèn)題時(shí)比較被動(dòng)和呆板,缺少動(dòng)用多種途徑嘗試、尋找數(shù)量關(guān)系的意識(shí)和習(xí)慣。

二、初中生列方程解應(yīng)用題建模能力培養(yǎng)路徑

(一)遵循原則,構(gòu)建真實(shí)學(xué)習(xí)情境

在課堂設(shè)計(jì)中,教師要遵循教學(xué)設(shè)計(jì)基本原則,設(shè)計(jì)出的建模活動(dòng)目的能更明確,最終達(dá)到學(xué)以致用的效果;支持學(xué)生發(fā)掘問(wèn)題,避免強(qiáng)加給他們額外的學(xué)習(xí)目標(biāo);設(shè)計(jì)出真實(shí)的學(xué)習(xí)情境,使學(xué)生能經(jīng)歷與現(xiàn)實(shí)世界類似的認(rèn)知挑戰(zhàn)。生活化的教學(xué)情境設(shè)計(jì)也能讓學(xué)生更主動(dòng)參與數(shù)學(xué)學(xué)習(xí),有更大的主動(dòng)性,還能在多模式的情境驗(yàn)證中求得不同的觀點(diǎn)。通過(guò)創(chuàng)設(shè)情境進(jìn)行教學(xué),幫助學(xué)生在真實(shí)或接近真實(shí)的情境中有效解決相關(guān)數(shù)學(xué)問(wèn)題。在生活問(wèn)題解決中,數(shù)學(xué)建模方法的養(yǎng)成,還需結(jié)合實(shí)踐活動(dòng)、社會(huì)熱點(diǎn)、日常生活等,有效解決相關(guān)數(shù)學(xué)知識(shí)、建立模型。為引導(dǎo)學(xué)生深入社會(huì)、農(nóng)村、工廠、企業(yè)等地方,取得第一手資料,從身邊的基本問(wèn)題觸出發(fā)。在數(shù)學(xué)和生活的密切管理中,更好地讓教學(xué)融入生活,并培養(yǎng)學(xué)生的應(yīng)用數(shù)學(xué)思想能力。案例1.年關(guān)將至,11月份某服裝廠每天生產(chǎn)女裝300套,或男裝200套,每生產(chǎn)一套女裝需要成本50元,可盈利24元;每生產(chǎn)一套男裝需要成本120元,可盈利60元。若要使該服裝廠盈利264000元,則11月份應(yīng)安排生產(chǎn)女裝、男裝各多少天?本題是關(guān)于利潤(rùn)的數(shù)學(xué)建模問(wèn)題。引導(dǎo)學(xué)生理解生活中成本、售價(jià)、數(shù)量、利潤(rùn)等概念(注意單件利潤(rùn)與總利潤(rùn)的區(qū)別),提取題型中的有效信息。已知西服、童裝單件的成本和利潤(rùn),生產(chǎn)的天數(shù)未知。若設(shè)二元,可設(shè)生產(chǎn)女裝x天,生產(chǎn)男裝y天。根據(jù)利潤(rùn)公式找等量關(guān)系,總利潤(rùn)=單件利潤(rùn)*生產(chǎn)數(shù)量,建立數(shù)學(xué)模型,可得方程組:■■■x+y=30300×24x+200×60y=264000若設(shè)一元,也可根據(jù)利潤(rùn)的數(shù)學(xué)模型列出一元一次方程300×24x+200×60(30-x)=264000。在該二元一次方程知識(shí)點(diǎn)考察上,二元一次方程有無(wú)數(shù)個(gè)解,除非題目中有特殊條件。而二元一次方程組有解,有且只有唯一的一組解,即x,y的值只有一組。但當(dāng)方程組中上下兩式相等時(shí),則有無(wú)數(shù)個(gè)解。當(dāng)兩式平行時(shí),無(wú)解,如x=y,x又等于y+1。在解法上,減少未知數(shù)的個(gè)數(shù),使多元方程最終轉(zhuǎn)化為一元一次方程再解出未知數(shù)。這種將方程組中的未知數(shù)個(gè)數(shù)由多化少,逐一解決的解法,叫做消元解法。即有些題型既可以設(shè)二元又可以設(shè)一元的思想,解決類似應(yīng)用題。

(二)剝繭抽絲,提升數(shù)到式轉(zhuǎn)化

數(shù)學(xué)建模實(shí)質(zhì)上是去粗取精、去偽存真、抽象概括的過(guò)程。在當(dāng)下的數(shù)學(xué)課堂教學(xué)中對(duì)初中生文字理解能力不足,如果遇到文字量大的應(yīng)用題,學(xué)生會(huì)視覺(jué)疲勞,分不清題干的主次,抓不住題目中的關(guān)鍵字眼的問(wèn)題。為此應(yīng)培養(yǎng)學(xué)生的檢索能力,讓學(xué)生在移植的數(shù)學(xué)模型中,建構(gòu)基本數(shù)學(xué),并確保其在培養(yǎng)學(xué)生檢索能力上更靈活。數(shù)學(xué)建模教學(xué)中,落實(shí)培養(yǎng)聯(lián)系實(shí)際、全面考慮問(wèn)題等的能力。為在課本知識(shí)的教學(xué)中發(fā)展學(xué)生的建模思想,除了嚴(yán)格數(shù)學(xué)建模的一般步驟外,還需綜合培養(yǎng)學(xué)生的數(shù)學(xué)建模思想;在實(shí)際中解決相關(guān)問(wèn)題,促進(jìn)學(xué)生數(shù)學(xué)素質(zhì)提高。以列方程解應(yīng)用題模型為例,求解“一元二次方程中的平均變化率”問(wèn)題。案例2.由于新冠疫情的擴(kuò)散,核酸檢測(cè)的需求加大,工廠加大的投資力度。2020年用于生產(chǎn)核酸檢測(cè)試劑投資40萬(wàn)元,2021年用于生產(chǎn)核酸檢測(cè)試劑投資48.4萬(wàn)元,求兩年間生產(chǎn)核酸檢測(cè)試劑投資的平均年增長(zhǎng)率。1.引導(dǎo)學(xué)生思考,設(shè)這兩年生產(chǎn)核酸檢測(cè)試劑投資的平均增長(zhǎng)率為x,那么2021年用于生產(chǎn)核酸檢測(cè)試劑的投資額為多少元?那么2020年用于生產(chǎn)核酸檢測(cè)試劑的投資額為多少元?2.模型建立2020年用于生產(chǎn)核酸檢測(cè)試劑的投資額為:40(1+x);2021年用于生產(chǎn)核酸檢測(cè)試劑的投資額為:40(1+x)2;根據(jù)2021年用于生產(chǎn)核酸檢測(cè)試劑的投資48.4萬(wàn)元,得到方程:40(1+x)2=48.4。設(shè)初始數(shù)據(jù)為m,終止數(shù)據(jù)為n,平均變化率為x,則經(jīng)過(guò)兩年增長(zhǎng)或降低后得到方程形式為m(1+x)2=n或者m(1-x)2=n。3.對(duì)一元二次方程求解并對(duì)倆解進(jìn)行取舍,回答實(shí)際問(wèn)題解方程:40(1+x)2=48.4得:X1=0.1=10%,X2=-2.1(不合題意,舍去)。故這兩年生產(chǎn)核酸檢測(cè)試劑投資的平均增長(zhǎng)率為10%。方程數(shù)學(xué)建模學(xué)生會(huì)根據(jù)實(shí)際問(wèn)題中題干利用數(shù)學(xué)公式進(jìn)行數(shù)學(xué)抽象,如上題中:2021年用于生產(chǎn)核酸檢測(cè)試劑的投資額為:40(1+x)2。實(shí)際上,好多學(xué)生會(huì)錯(cuò)誤地理解為是2倍,而不是二次方。在解此類方程可以方程倆邊同除40,再直接開平方,這樣比直接去掛號(hào)求解來(lái)得簡(jiǎn)單易解;最后,根據(jù)實(shí)際意義,對(duì)答案進(jìn)行檢驗(yàn)及取舍如上題中平均年增長(zhǎng)率為正數(shù)所以其中一個(gè)答案X2=-2.1不合題意,舍去。

(三)挖掘教材,培養(yǎng)方法和技巧

應(yīng)當(dāng)下教學(xué)大綱和課本要求,在“基本知識(shí)、基本技術(shù)、基本技能”的系統(tǒng)教學(xué)環(huán)節(jié),教師應(yīng)確認(rèn)識(shí)純數(shù)學(xué)和應(yīng)用數(shù)學(xué)間的關(guān)系,綜合培養(yǎng)數(shù)學(xué)的建模能力,挖掘教材,強(qiáng)化建模意識(shí)。教師深入教材中心并加以鉆研,在教材內(nèi)涵挖掘上,對(duì)相關(guān)問(wèn)題加以提煉,并尋求與實(shí)際數(shù)學(xué)建模及其教材相關(guān)的素材。一般情況下,初中應(yīng)用題與大多與現(xiàn)實(shí)生活或具體情境相結(jié)合,教師應(yīng)引導(dǎo)學(xué)生從中抽象出數(shù)學(xué)問(wèn)題,運(yùn)用信息收集與整理能力、類比能力、與創(chuàng)新能力等對(duì)題干進(jìn)行分析、解剖,再用數(shù)學(xué)符號(hào)建立方程、不等式與方程、函數(shù)與方程等模型表示數(shù)學(xué)問(wèn)題,最終找到解決方案。在求解一元二次方程時(shí),常見(jiàn)的應(yīng)用題有:增長(zhǎng)率問(wèn)題、行程問(wèn)題、流感問(wèn)題、面積問(wèn)題等。而列方程解應(yīng)用題的基本步驟包括:讀(讀題)、找(找出題中的已知量、未知量,根據(jù)題意找等量關(guān)系)、設(shè)(設(shè)未知數(shù),包括設(shè)直接未知數(shù)或間接未知數(shù))、列(列一元二次方程方程)、解(解一元二次方程方程)、檢驗(yàn)(注意解的準(zhǔn)確性及是否符合實(shí)際意義);答(題意所要求的答案)等6環(huán)節(jié)。其中,正確找出應(yīng)用題的等量關(guān)系是列一元二次議程應(yīng)用題的難點(diǎn)所在,筆者認(rèn)為可以采取如下方式探尋等量關(guān)系:首先,要認(rèn)真閱讀題目,粗讀、精讀相結(jié)合,直至讀懂題意;其次,充分理解題目中的有效條件,去除干擾項(xiàng);再次,要善于發(fā)現(xiàn)并利用間接的、潛在的等量關(guān)系;最后,利用關(guān)鍵語(yǔ)句、公式、定理等尋找已知的數(shù)學(xué)模型,進(jìn)行建模,確定解題方案,最終解答。三、總結(jié)在《新課標(biāo)》的指導(dǎo)下,一線教師應(yīng)該慎重考慮如何有效利用現(xiàn)有資源和條件,緊緊圍繞數(shù)學(xué)建模能力,優(yōu)化課堂教學(xué)手段,提升初中數(shù)學(xué)課堂中方程應(yīng)用題教學(xué)效率[3]。巧用生活實(shí)例,激發(fā)學(xué)生建模思維;善用多樣教學(xué)方式,提升學(xué)生建模能力,使其學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)解決現(xiàn)實(shí)問(wèn)題[4]。

作者:江霞 單位:福州第十八中學(xué)

數(shù)學(xué)應(yīng)用能力培養(yǎng)分析2

隨著經(jīng)濟(jì)的不斷發(fā)展,學(xué)業(yè)階段內(nèi)的學(xué)科知識(shí)不僅源于生活,存在于生活,更是需要學(xué)生能夠在有效學(xué)習(xí)的基礎(chǔ)上應(yīng)用于生活。高職作為具有明確教育目標(biāo)的高等院校,對(duì)于學(xué)生的應(yīng)用實(shí)踐能力具有主要的培育理念?;跀?shù)學(xué)課程的教育教學(xué)中,教師在進(jìn)行知識(shí)講授的同時(shí),更是需要注重學(xué)生應(yīng)用數(shù)學(xué)意識(shí)及能力的培養(yǎng),以促使其在此期間能夠有效應(yīng)用數(shù)學(xué)思維,探求日常生活中實(shí)際問(wèn)題的解決策略。就目前高職院校的數(shù)學(xué)教學(xué)而言,其未能夠形成對(duì)于數(shù)學(xué)應(yīng)用教育價(jià)值及意義的正確理解,且學(xué)生對(duì)于數(shù)學(xué)的應(yīng)用意識(shí)及能力普遍較低。對(duì)于高職院校的培養(yǎng)目標(biāo)而言,其遠(yuǎn)遠(yuǎn)達(dá)不到教育標(biāo)準(zhǔn),不能有效滿足社會(huì)發(fā)展的需要。因此,高職數(shù)學(xué)教師應(yīng)加強(qiáng)對(duì)于學(xué)生數(shù)學(xué)應(yīng)用能力的培養(yǎng),使其能夠形成良好的數(shù)學(xué)應(yīng)用意識(shí),使得學(xué)生能夠充分發(fā)揮數(shù)學(xué)思維,提升數(shù)學(xué)專業(yè)學(xué)科能力,從而實(shí)現(xiàn)有效人才的培養(yǎng)。

1培養(yǎng)意義

1.1增添教學(xué)趣味在這一培養(yǎng)目標(biāo)的基礎(chǔ)上,教師需通過(guò)不斷調(diào)整并創(chuàng)建教學(xué)模式,從而構(gòu)建豐富多元的教學(xué)方法,使得課堂教學(xué)形式多樣,能夠有效調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。同時(shí),在現(xiàn)時(shí)代對(duì)于學(xué)生文本的思想理念下,教師在進(jìn)行課堂模式的改變與創(chuàng)新過(guò)程中,亦是需要圍繞學(xué)生而構(gòu)建具有學(xué)生主體性質(zhì)的課堂,使得學(xué)生能夠充分融入課堂學(xué)習(xí)中,在自主參與及探究下,感受數(shù)學(xué)的樂(lè)趣。如此一來(lái),課堂則能夠有效增添趣味性色彩,使得學(xué)生的學(xué)習(xí)更具效率,應(yīng)用意識(shí)及能力亦能夠有效地提升。

1.2提高數(shù)學(xué)理解及應(yīng)用能力數(shù)學(xué)應(yīng)用意識(shí)的培養(yǎng)需要從多個(gè)角度展開,通過(guò)多元化教學(xué)指導(dǎo)方式,促使學(xué)生逐漸形成良好的意識(shí)思想,而在此過(guò)程中,教學(xué)活動(dòng)則亦是逐漸變得豐富多元,對(duì)于學(xué)生數(shù)學(xué)知識(shí)的理解能夠更好地促進(jìn),從而使其提高數(shù)學(xué)理解。同時(shí),在應(yīng)用能力的培養(yǎng)教育中,無(wú)疑對(duì)于學(xué)生的應(yīng)用能力具有一定的提升效果,通過(guò)實(shí)踐活動(dòng)的開展,以及與生活實(shí)際的結(jié)合,則使得學(xué)生的數(shù)學(xué)應(yīng)用得以有效鍛煉,從而實(shí)現(xiàn)數(shù)學(xué)應(yīng)用的提升[1]。因此,在高職數(shù)學(xué)的教學(xué)中,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)與能力,亦能夠推進(jìn)學(xué)生數(shù)學(xué)的綜合學(xué)習(xí)效果,實(shí)現(xiàn)教學(xué)的高效性。

2培養(yǎng)策略

2.1革新教學(xué)觀念,強(qiáng)化數(shù)學(xué)應(yīng)用意識(shí)培養(yǎng)縱觀現(xiàn)時(shí)代社會(huì)的發(fā)展趨勢(shì),數(shù)學(xué)的教學(xué)以無(wú)法滿足于當(dāng)今社會(huì)對(duì)于人才的需求,從教育角度而言,新型教育思想中更是對(duì)于科學(xué)性、綜合性教育培養(yǎng)提出了要求與建議,以促使教師在傳統(tǒng)知識(shí)灌輸?shù)幕A(chǔ)上,進(jìn)一步實(shí)現(xiàn)數(shù)學(xué)應(yīng)用技能的培養(yǎng)教育[2]。同時(shí),在科技不斷進(jìn)步的時(shí)代環(huán)境下,數(shù)學(xué)學(xué)科知識(shí)更是逐漸存在于各個(gè)學(xué)科中,與其存在著緊密的聯(lián)系。其在高等數(shù)學(xué)教育中更是逐漸趨于技術(shù)性發(fā)展,形成較強(qiáng)的社會(huì)化功能。近年來(lái),應(yīng)用數(shù)學(xué)已逐漸拓展至其他自然科學(xué),且在高科技領(lǐng)域中更是被廣泛應(yīng)用,甚至于延伸至社會(huì)學(xué)領(lǐng)域??梢?jiàn),應(yīng)用數(shù)學(xué)的價(jià)值意義具有廣泛性及重要性,在現(xiàn)代社會(huì)中具有愈加重要的作用意義?;诖?,教師則需革新數(shù)學(xué)教學(xué)的教育思想及觀念意識(shí),立足于現(xiàn)時(shí)代社會(huì)科學(xué)的發(fā)展,通過(guò)不斷更新自身的知識(shí)結(jié)構(gòu),以全面掌握新的數(shù)學(xué)應(yīng)用知識(shí)與技能,進(jìn)而將其貫穿于教育教學(xué)中,實(shí)現(xiàn)高質(zhì)量的課程教學(xué)。在此過(guò)程中,需要教師注意的是,應(yīng)用意識(shí)與能力是以建立在生活實(shí)際基礎(chǔ)之上,因而在這一方面的培養(yǎng)教育期間,則需結(jié)合學(xué)生的生活經(jīng)驗(yàn)進(jìn)行教學(xué)指導(dǎo),以促使其能夠?qū)?shù)學(xué)知識(shí)有效運(yùn)用至生活實(shí)際,使其在此過(guò)程中逐漸意識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值與意義。2.2注重教學(xué)方法的多元與創(chuàng)新教學(xué)方式直接影響著數(shù)學(xué)應(yīng)用意識(shí)及能力的成效,因而教師則需注重教學(xué)方法的創(chuàng)新構(gòu)建,以圍繞應(yīng)用意識(shí)及能力培養(yǎng)的角度,科學(xué)設(shè)計(jì)教學(xué)方法,以促使學(xué)生的意識(shí)與能力能夠有效培育[3]。例如,在函數(shù)部分的教學(xué)過(guò)程中,則可創(chuàng)設(shè)情境氛圍,讓學(xué)生入情入境的融入至數(shù)學(xué)學(xué)習(xí)中,使其在情境中逐漸形成數(shù)學(xué)的應(yīng)用意識(shí)。比如,構(gòu)建A、B集合的情景,并以此為背景引入函數(shù)思想,讓學(xué)生在“A、B集合”中學(xué)習(xí)這一部分的知識(shí),以加深其對(duì)于函數(shù)概念及應(yīng)用的認(rèn)知,使得學(xué)生在此氛圍下有效提高其學(xué)習(xí)狀態(tài),從而實(shí)現(xiàn)數(shù)學(xué)應(yīng)用意識(shí)和能力的培養(yǎng)。除上述情境教學(xué)的方式之外,教師亦可采用多媒體展開教學(xué),以借助動(dòng)態(tài)直觀圖像,促使學(xué)生能夠從多角度深入數(shù)學(xué)知識(shí)的學(xué)習(xí),以達(dá)到意識(shí)和能力培養(yǎng)的目的。此外,生活是數(shù)學(xué)應(yīng)用的主要根據(jù)地,對(duì)于學(xué)生理解數(shù)學(xué)亦具有較好的輔助作用,因此,教師亦可通過(guò)生活化的視角展開教學(xué)活動(dòng),將實(shí)際生活與數(shù)學(xué)有機(jī)結(jié)合,以加強(qiáng)學(xué)生對(duì)于數(shù)學(xué)應(yīng)用的意識(shí),培養(yǎng)其在實(shí)際問(wèn)題中的應(yīng)用解決能力。例如,在“平面相互關(guān)系”的教授期間,則可借助生活中墻面與地面的關(guān)系進(jìn)行教學(xué),使其在現(xiàn)實(shí)生活的現(xiàn)象中更好的理解數(shù)學(xué)知識(shí)。再如,在“二面角”的講解時(shí),則可借助房屋裝修及建造等生活示例進(jìn)行演示教學(xué),引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)與生活現(xiàn)象有機(jī)結(jié)合,在此過(guò)程中,教師可在生活案例的提示下,引導(dǎo)學(xué)生結(jié)合教師所列舉的生活現(xiàn)象,使其發(fā)揮生活經(jīng)驗(yàn)與思維進(jìn)行聯(lián)想,進(jìn)而加強(qiáng)學(xué)生數(shù)學(xué)應(yīng)用意識(shí)的培養(yǎng)。如此一來(lái),通過(guò)生活化教學(xué)的引入,學(xué)生對(duì)于數(shù)學(xué)的接受能力及學(xué)習(xí)興趣亦能夠得以有效提升,并在這一教學(xué)模式的影響下,使得學(xué)生對(duì)于數(shù)學(xué)知識(shí)的生活化應(yīng)用逐漸在此期間受到啟發(fā),從而實(shí)現(xiàn)數(shù)學(xué)應(yīng)用意識(shí)及能力的良好形成。

2.3將數(shù)學(xué)建模融入教學(xué)從目前學(xué)生無(wú)法有效實(shí)現(xiàn)數(shù)學(xué)應(yīng)用能力的角度而言,其主要是由于學(xué)生缺乏應(yīng)用意識(shí)。在面對(duì)具體問(wèn)題期間,并未能夠從數(shù)學(xué)的角度針對(duì)問(wèn)題進(jìn)行思考分析。其次,學(xué)生在數(shù)學(xué)的學(xué)習(xí)過(guò)程中亦不具備良好的學(xué)習(xí)方法,沒(méi)有有效掌握基礎(chǔ)知識(shí),且主動(dòng)性較差。基于此,教師則可將數(shù)學(xué)建模融入課堂教學(xué),以培養(yǎng)其從數(shù)學(xué)的視角探析現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,進(jìn)而引導(dǎo)其利用數(shù)學(xué)方式解決問(wèn)題,以此促使其逐漸感受數(shù)學(xué)的實(shí)用性,使其了解數(shù)學(xué)的教育意義,從而培養(yǎng)其數(shù)學(xué)的應(yīng)用意識(shí)[4]。此外,在科技時(shí)代的背景環(huán)境下,教師還可將數(shù)學(xué)相關(guān)軟件進(jìn)行應(yīng)用教學(xué),以促使其能夠利用軟件進(jìn)行數(shù)學(xué)計(jì)算,以促使其能夠?qū)⒏嗟膶W(xué)習(xí)時(shí)間置于數(shù)學(xué)思維的發(fā)展使其能夠在有效教學(xué)時(shí)間內(nèi)掌握更多的知識(shí)內(nèi)容,拓寬問(wèn)題解決的思路及能力,以促使應(yīng)用數(shù)學(xué)意識(shí)和能力的培養(yǎng)得以有效推進(jìn)。

2.4加強(qiáng)思維方法的訓(xùn)練在高職階段的數(shù)學(xué)教學(xué)中,其不僅是對(duì)于學(xué)生的再教育,亦是肩負(fù)著培養(yǎng)學(xué)生終身學(xué)習(xí)的重要責(zé)任,其中,數(shù)學(xué)思維方法的培養(yǎng),更是學(xué)生應(yīng)用意識(shí)及能力的重要元素,具有重要的影響作用。因而在具體教學(xué)實(shí)踐中,則需加強(qiáng)對(duì)于數(shù)學(xué)知識(shí)的研究,注重對(duì)于學(xué)生問(wèn)題解決思路及方法的培養(yǎng)訓(xùn)練,從而實(shí)現(xiàn)數(shù)學(xué)應(yīng)用及意識(shí)的有效培養(yǎng)。例如,在“定積分”的講授時(shí),則可引入經(jīng)典例題進(jìn)行教學(xué),以促使學(xué)生在例題思考中,掌握問(wèn)題解決的方法策略,進(jìn)而在此基礎(chǔ)上逐漸汲取這一部分的知識(shí),使其不僅能夠有效學(xué)習(xí)知識(shí),亦能夠使得思維得以訓(xùn)練。在此過(guò)程中,則可引導(dǎo)學(xué)生探究這一類知識(shí)題目的解題思路及方法,比如利用極限思想排除錯(cuò)誤值,進(jìn)而獲取更為精準(zhǔn)的數(shù)值等。通過(guò)這樣的方式,有助于學(xué)生應(yīng)用意識(shí)的良好形成。

2.5提高應(yīng)用知識(shí)水平結(jié)合目前高職數(shù)學(xué)的教材設(shè)計(jì)中,其僅納入了高等數(shù)學(xué)中微積分等基本模塊知識(shí),且課程內(nèi)容仍是以理論為主要體現(xiàn)方式,缺乏實(shí)例部分的內(nèi)容,導(dǎo)致學(xué)生的應(yīng)用能力無(wú)法得以有效的指導(dǎo)教育。因此,教師則需革新教學(xué)思想,在基礎(chǔ)知識(shí)的基礎(chǔ)上,將教材內(nèi)容重新整合編排,將新知識(shí)融入其中,并結(jié)合實(shí)際案例展開教學(xué),以促使學(xué)生得以學(xué)習(xí)更具實(shí)用性的數(shù)學(xué)知識(shí)。例如,在經(jīng)濟(jì)數(shù)學(xué)中,課程通常是以微積分、線性代數(shù)及概率統(tǒng)計(jì)為主要內(nèi)容?;诖耍處熢谶M(jìn)行課程優(yōu)化期間,首先需依據(jù)課程內(nèi)容,關(guān)注其系統(tǒng)性及邏輯性,以適應(yīng)專業(yè)應(yīng)用的需要。其次,應(yīng)加強(qiáng)對(duì)于理論知識(shí)的推導(dǎo)教學(xué),注重學(xué)生思維的發(fā)展過(guò)程,通過(guò)演繹推理的教學(xué)方式,加強(qiáng)學(xué)生對(duì)于數(shù)學(xué)概念的理解。再者,問(wèn)題的解決并非直接教授解決方法,還需要引導(dǎo)學(xué)生了解計(jì)算過(guò)程,比如,概率統(tǒng)計(jì)部分,需關(guān)注實(shí)際應(yīng)用,微積分需注重過(guò)程推導(dǎo),線性代數(shù)中,則需加強(qiáng)運(yùn)算訓(xùn)練。最后,依據(jù)學(xué)生專業(yè)需求進(jìn)一步整合教學(xué)內(nèi)容,以實(shí)現(xiàn)學(xué)生應(yīng)用知識(shí)水平的有效提高。

2.6開展課外講座及實(shí)踐活動(dòng)

2.6.1組織學(xué)生積極參與課外講座現(xiàn)階段的高職數(shù)學(xué)教學(xué)中仍主要一單一形式進(jìn)行教學(xué)指導(dǎo),但對(duì)于學(xué)生而言,形式多樣的課程更能夠吸引學(xué)生的注意力?;诖耍處焺t可組織學(xué)生積極參與其中,通過(guò)接觸具有開放性、新穎等內(nèi)容,拓展學(xué)生的視野,以促使學(xué)生在此過(guò)程中的數(shù)學(xué)熱情得以有效被吸引,從而激發(fā)其數(shù)學(xué)知識(shí)探索的動(dòng)力,使其樂(lè)于探索,培養(yǎng)其數(shù)學(xué)思維及應(yīng)用能力。高職院校在進(jìn)行著一層面的互動(dòng)開展時(shí),可在學(xué)生入學(xué)時(shí)統(tǒng)一舉辦,設(shè)立多主題的數(shù)學(xué)應(yīng)用講座內(nèi)容,以促使學(xué)生更加全面有效的認(rèn)識(shí)數(shù)學(xué)應(yīng)用的價(jià)值意義,從而幫助學(xué)生構(gòu)建數(shù)學(xué)應(yīng)用的意識(shí)。

2.6.2布置實(shí)用的課外作業(yè)和實(shí)踐活動(dòng)教師在課外作業(yè)的布置時(shí)要立足于應(yīng)用意識(shí)和能力的角度,設(shè)計(jì)具有生活化、實(shí)用性及探究性的作業(yè)內(nèi)容,以促使其能夠在實(shí)踐中有效解決問(wèn)題,以在作業(yè)完成過(guò)程中,潛移默化地形成數(shù)學(xué)應(yīng)用意識(shí),鍛煉其應(yīng)用能力。此外,為進(jìn)一步促進(jìn)學(xué)生應(yīng)用意識(shí)和能力的培養(yǎng),則可組織學(xué)生參加社會(huì)實(shí)踐活動(dòng),以促使其在活動(dòng)中實(shí)現(xiàn)這一能力的鍛煉與發(fā)展。

3結(jié)束語(yǔ)

應(yīng)用意識(shí)及能力的培育對(duì)于學(xué)生的發(fā)展具有重要的意義,是在現(xiàn)階段教育思想中對(duì)于高職數(shù)學(xué)教學(xué)目標(biāo)的實(shí)現(xiàn),亦是有效完成專業(yè)人才培養(yǎng)的重要過(guò)程。教師需加強(qiáng)對(duì)于學(xué)生這一思想能力的培養(yǎng),通過(guò)多種教學(xué)手段,以促進(jìn)學(xué)生的良好發(fā)展,使其在此期間不僅能夠有效掌握數(shù)學(xué)知識(shí),亦能夠全面推進(jìn)學(xué)生數(shù)學(xué)專業(yè)能力的發(fā)展,使其能夠?qū)?shù)學(xué)思維有效應(yīng)用至解決實(shí)際問(wèn)題的過(guò)程當(dāng)中,實(shí)現(xiàn)教育的根本目的,促進(jìn)學(xué)生的全面發(fā)展。

作者:魏鏡酈 單位:理學(xué)學(xué)士武漢工程職業(yè)技術(shù)學(xué)院

數(shù)學(xué)應(yīng)用能力培養(yǎng)分析3

一、概述

全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽始辦于1992年,由教育部高等教育司和中國(guó)工業(yè)與應(yīng)用學(xué)會(huì)主辦,歷經(jīng)30年的發(fā)展已成為全國(guó)高等院校規(guī)模最大的學(xué)科競(jìng)賽。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽旨在鼓勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的積極性,提高學(xué)生建立模型和利用信息化技術(shù)解決具有實(shí)際背景問(wèn)題的綜合應(yīng)用能力,培養(yǎng)學(xué)生創(chuàng)新能力及合作意識(shí),推動(dòng)高等院校的大學(xué)數(shù)學(xué)課程的教學(xué)體系、教學(xué)內(nèi)容改革和人才培養(yǎng)[1-5]。數(shù)學(xué)建模是數(shù)學(xué)聯(lián)系現(xiàn)實(shí)世界的橋梁和紐帶,該競(jìng)賽能夠激發(fā)學(xué)生將理論應(yīng)用到實(shí)際當(dāng)中,通過(guò)理論實(shí)踐來(lái)發(fā)現(xiàn)實(shí)際問(wèn)題、解決實(shí)際問(wèn)題;數(shù)學(xué)建模不拘一格、充滿挑戰(zhàn),具有很強(qiáng)的探索性、創(chuàng)造性和科學(xué)性。大學(xué)生參加數(shù)學(xué)建模競(jìng)賽,不僅可以激發(fā)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,提升科學(xué)素養(yǎng)和實(shí)踐創(chuàng)新能力,還可以培養(yǎng)其嚴(yán)謹(jǐn)求實(shí)的態(tài)度、團(tuán)隊(duì)合作的能力和開拓創(chuàng)新的精神。現(xiàn)階段我國(guó)的高等學(xué)校都在轉(zhuǎn)變教育思想觀念,優(yōu)化人才培養(yǎng)模式,強(qiáng)化人才培養(yǎng)的質(zhì)量,提高學(xué)生的實(shí)踐創(chuàng)新能力,培養(yǎng)適合現(xiàn)代化國(guó)家建設(shè)需求的高水平人才[6-9]。“工欲善其事必先利其器”,數(shù)學(xué)建模就是現(xiàn)代化建設(shè)的“利器”,數(shù)學(xué)建模競(jìng)賽開辟了人才培養(yǎng)模式的新渠道和新途徑。我校一直高度重視數(shù)學(xué)建模競(jìng)賽和數(shù)學(xué)基礎(chǔ)課程的教學(xué),數(shù)學(xué)教研室經(jīng)過(guò)多年的探索與實(shí)踐,緊緊圍繞解決“人才培養(yǎng)”“教”與“學(xué)”的關(guān)鍵問(wèn)題。經(jīng)過(guò)探索實(shí)踐逐漸形成堅(jiān)持立德樹人,以“實(shí)踐性、創(chuàng)新性”為培養(yǎng)目標(biāo)、以“懂理論、會(huì)應(yīng)用”為具體目標(biāo)的大學(xué)實(shí)踐創(chuàng)新能力培養(yǎng)模式,取得了涵蓋教學(xué)理念、教學(xué)內(nèi)容、課程建設(shè)、學(xué)科競(jìng)賽、教學(xué)團(tuán)隊(duì)和課外學(xué)習(xí)等育人環(huán)節(jié)的教學(xué)改革成果。人才培養(yǎng)質(zhì)量是高等教育的生命線,推進(jìn)高等教育現(xiàn)代化,重在理念和行動(dòng)。在人才質(zhì)量培養(yǎng)中,我們進(jìn)行多次的探索實(shí)踐培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用創(chuàng)新能力,將數(shù)學(xué)建模競(jìng)賽的相關(guān)內(nèi)容融于大學(xué)數(shù)學(xué)教學(xué)改革中,為培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)方法分析問(wèn)題、解決實(shí)際問(wèn)題的能力開拓了一條非常有效的途徑[10-13]。以數(shù)學(xué)課程和教材建設(shè)為切入點(diǎn),教改項(xiàng)目建設(shè)為推動(dòng),對(duì)數(shù)學(xué)課程的教學(xué)內(nèi)容、教學(xué)方法、教學(xué)手段等進(jìn)行改革,提高教學(xué)質(zhì)量。同時(shí)以聘請(qǐng)專家指導(dǎo)、學(xué)術(shù)交流、參加教學(xué)科研項(xiàng)目、結(jié)合競(jìng)賽為切入點(diǎn),進(jìn)行教師隊(duì)伍建設(shè),提高教學(xué)、科研和指導(dǎo)競(jìng)賽水平。并以對(duì)競(jìng)賽培訓(xùn)科學(xué)安排、扎實(shí)工作,提高成績(jī)?yōu)榍腥朦c(diǎn),著力培養(yǎng)生應(yīng)用實(shí)踐創(chuàng)新能力,提高課程教學(xué)質(zhì)量。

二、課程改革培養(yǎng)數(shù)學(xué)應(yīng)用能力

(一)高等數(shù)學(xué)課程改革注重因材施教,強(qiáng)化數(shù)學(xué)基礎(chǔ)理論??紤]到我校學(xué)生的數(shù)學(xué)基礎(chǔ)和數(shù)學(xué)興趣,在高等數(shù)學(xué)課程講授中,加大對(duì)高等數(shù)學(xué)基礎(chǔ)預(yù)備知識(shí)的講解,以及與初等數(shù)學(xué)的內(nèi)容的銜接。改革教學(xué)方法,發(fā)展數(shù)學(xué)可視化。為了能使學(xué)生更好地理解數(shù)學(xué)概念,將數(shù)學(xué)可視化程序引入課堂,借助于機(jī)械化語(yǔ)言,將極限、級(jí)數(shù)、定積分、重積分、平面曲線、空間曲線曲面等進(jìn)行可視化演示,使抽象概念形象化、具體化、圖形化。1.注重學(xué)生應(yīng)用能力的培養(yǎng),將傳統(tǒng)數(shù)學(xué)知識(shí)與數(shù)學(xué)軟件相結(jié)合傳統(tǒng)高等數(shù)學(xué)教學(xué)偏重于理論知識(shí)傳授、強(qiáng)調(diào)知識(shí)結(jié)構(gòu)的嚴(yán)謹(jǐn)性;忽視對(duì)知識(shí)的應(yīng)用性和解決實(shí)際問(wèn)題能力的培養(yǎng)、學(xué)生的數(shù)學(xué)學(xué)習(xí)特點(diǎn)等。學(xué)生在學(xué)習(xí)中遇到數(shù)學(xué)運(yùn)算時(shí)理解不到位,數(shù)學(xué)知識(shí)與應(yīng)用脫節(jié)。傳統(tǒng)高等數(shù)學(xué)教學(xué)主要的教學(xué)模式是理論講解、定理推導(dǎo)和、例題計(jì)算和練習(xí)等。雖然教學(xué)中學(xué)生的數(shù)學(xué)思維能力和考慮問(wèn)題的邏輯思考能力得到了一定的鍛煉,但是教學(xué)內(nèi)容和形式較為枯燥,與實(shí)際生活有些脫離,學(xué)生學(xué)習(xí)熱情不足。結(jié)合學(xué)生的特點(diǎn),改革高等數(shù)學(xué)的教學(xué)內(nèi)容,突出“理論上以夠用為度,應(yīng)用為目的”的原則,不追求理論推導(dǎo)。突出應(yīng)用,調(diào)整教學(xué)內(nèi)容,教學(xué)內(nèi)容中突出數(shù)學(xué)建模思想的滲透,并將傳統(tǒng)數(shù)學(xué)知識(shí)與MATLAB、SPSS、MAPLE等軟件有機(jī)地結(jié)合起來(lái)。教學(xué)中使用數(shù)學(xué)軟件,培養(yǎng)學(xué)生將數(shù)學(xué)知識(shí)和信息化技術(shù)相結(jié)合解決實(shí)際問(wèn)題的能力。2.注重項(xiàng)目案例的應(yīng)用,在教學(xué)中滲透數(shù)學(xué)建模的思想學(xué)生學(xué)習(xí)數(shù)學(xué)的目的在于用數(shù)學(xué)。教學(xué)中有非常多的應(yīng)用案例,如極限在經(jīng)濟(jì)中的復(fù)利問(wèn)題和貼現(xiàn)問(wèn)題;變力沿直線所做的功;物理上的水壓力和引力;微分方程模型中的放射性元素的衰變問(wèn)題、串聯(lián)電路問(wèn)題、懸鏈線問(wèn)題、自由落體運(yùn)動(dòng)、彈簧振動(dòng)問(wèn)題等;導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)方面的邊際問(wèn)題、經(jīng)營(yíng)成果分析和彈性分析問(wèn)題;差分方程在經(jīng)濟(jì)應(yīng)用如貸款購(gòu)房問(wèn)題、籌措教育經(jīng)費(fèi)模型、供給與需求模型、價(jià)格與庫(kù)存模型,重積分在導(dǎo)彈、衛(wèi)星軌道方面的應(yīng)用等。通過(guò)這些具有實(shí)際背景的應(yīng)用案例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的熱情,案例的求解中讓學(xué)生掌握數(shù)學(xué)建模的思想方法,提高應(yīng)用數(shù)學(xué)的能力。

(二)線性代數(shù)課程改革1.注重因材施教,強(qiáng)化數(shù)學(xué)基礎(chǔ)考慮到學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)以及學(xué)生長(zhǎng)期以來(lái)的學(xué)習(xí)習(xí)慣,加大基礎(chǔ)知識(shí)的講授式教學(xué)。同時(shí)采用啟發(fā)誘導(dǎo)和問(wèn)題驅(qū)動(dòng)式教學(xué)方法,并強(qiáng)化課程學(xué)習(xí)過(guò)程考核監(jiān)督,自主開發(fā)網(wǎng)絡(luò)在線題庫(kù),優(yōu)化考核方式。利用現(xiàn)代信息化技術(shù),將知識(shí)傳授與能力培養(yǎng)相結(jié)合,促進(jìn)教育教學(xué)質(zhì)量的全面提高。2.強(qiáng)調(diào)數(shù)學(xué)思想,突出數(shù)學(xué)應(yīng)用從幾何背景解釋線性代數(shù)基本理論,培養(yǎng)學(xué)生數(shù)學(xué)思維和素養(yǎng)。從實(shí)際問(wèn)題出發(fā),設(shè)計(jì)矩陣應(yīng)用題目,增加有實(shí)際意義的數(shù)值計(jì)算及利用計(jì)算機(jī)軟件進(jìn)行研究的探索性內(nèi)容。運(yùn)用MAPLE實(shí)現(xiàn)數(shù)學(xué)實(shí)驗(yàn),培養(yǎng)學(xué)生的科學(xué)計(jì)算能力,激發(fā)學(xué)習(xí)的興趣,增強(qiáng)學(xué)生的線性代數(shù)的計(jì)算能力、MAPLE軟件應(yīng)用能力、編程能力。3.重構(gòu)知識(shí)體系,開展項(xiàng)目教學(xué)更新線性代數(shù)知識(shí)體系,在注重基礎(chǔ)知識(shí)的同時(shí),加強(qiáng)矩陣?yán)碚撛诠こ讨械膽?yīng)用實(shí)踐,開發(fā)矩陣在密碼學(xué)、電路、自動(dòng)控制、土木工程、化學(xué)等領(lǐng)域的工程項(xiàng)目,培養(yǎng)學(xué)生運(yùn)用線性代數(shù)理論分析研究并解決復(fù)雜工程問(wèn)題。通過(guò)實(shí)際工程項(xiàng)目的建模仿真計(jì)算等,強(qiáng)化代數(shù)基本理論及矩陣的實(shí)際應(yīng)用。

(三)概率論與數(shù)理統(tǒng)計(jì)課程改革以課程建設(shè)為切入點(diǎn),進(jìn)行了概率論與數(shù)理統(tǒng)計(jì)課程改革,改變了傳統(tǒng)數(shù)學(xué)教學(xué)模式。注重統(tǒng)計(jì)知識(shí)在大數(shù)據(jù)方面的應(yīng)用、注重項(xiàng)目案例與MATLAB、SPSS、R軟件相結(jié)合的教學(xué)、注重?cái)?shù)學(xué)建模思想的融入項(xiàng)目案例中。重構(gòu)概率論與數(shù)理統(tǒng)計(jì)的知識(shí)體系,在教學(xué)內(nèi)容中引入項(xiàng)目案例進(jìn)行項(xiàng)目教學(xué),使理論教學(xué)和項(xiàng)目案例進(jìn)行有機(jī)結(jié)合。更新概率論與數(shù)理統(tǒng)計(jì)的知識(shí)體系,開發(fā)概率統(tǒng)計(jì)理論在質(zhì)量管理、保險(xiǎn)精算、數(shù)理金融等領(lǐng)域的項(xiàng)目案例。強(qiáng)化統(tǒng)計(jì)的大數(shù)據(jù)的應(yīng)用,將大數(shù)據(jù)方面的應(yīng)用問(wèn)題和數(shù)學(xué)建模思想納入概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)中,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力。1.項(xiàng)目案例驅(qū)動(dòng)教學(xué),教學(xué)中滲透數(shù)學(xué)建模思想教學(xué)中介紹一些與概率論與數(shù)理統(tǒng)計(jì)有關(guān)的項(xiàng)目案例,如貼近生活的案例:生日相同的概率等;同時(shí)介紹一些知識(shí)將概率論與數(shù)理統(tǒng)計(jì)廣泛應(yīng)用于壽命預(yù)測(cè)、保險(xiǎn)、人口統(tǒng)計(jì)、選舉、氣象、天體觀測(cè)等領(lǐng)域。一些讓學(xué)生充分了解概率論與數(shù)理統(tǒng)計(jì)的發(fā)展歷程,對(duì)與概率統(tǒng)計(jì)有關(guān)的數(shù)學(xué)模型和求有一定的認(rèn)識(shí)。激發(fā)學(xué)生對(duì)該門課程的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的應(yīng)用概率與統(tǒng)計(jì)進(jìn)行數(shù)學(xué)建模能力。2.注重知識(shí)的應(yīng)用,將概率統(tǒng)計(jì)與數(shù)學(xué)軟件相結(jié)合大數(shù)據(jù)時(shí)代,數(shù)據(jù)處理能力尤為重要,概率論與數(shù)理統(tǒng)計(jì)是大數(shù)據(jù)科學(xué)的必修課,注重該門課程,并與處理軟件相結(jié)合,將更能激發(fā)學(xué)生的數(shù)學(xué)應(yīng)用能力。在概率統(tǒng)計(jì)課程的教學(xué)中引入數(shù)學(xué)實(shí)驗(yàn)。利用Excel、SPSS、MATLAB、R等軟件求解古典概率,常用分布概率的計(jì)算、數(shù)值特征的計(jì)算、二項(xiàng)式逼近正態(tài)分布、數(shù)據(jù)整理與顯示、置信區(qū)間、假設(shè)檢驗(yàn)、方差分析、回歸分析和相關(guān)分析等。把數(shù)學(xué)建模思想融入教學(xué)中,讓學(xué)生在實(shí)踐中應(yīng)用概率統(tǒng)計(jì)的相關(guān)知識(shí);并與信息化技術(shù)相結(jié)合,提高學(xué)生學(xué)習(xí)的興趣,培養(yǎng)數(shù)學(xué)應(yīng)用數(shù)學(xué)進(jìn)行數(shù)據(jù)處理的能力。

三、數(shù)學(xué)建模競(jìng)賽培訓(xùn)改革

以參加數(shù)學(xué)建模競(jìng)賽為契機(jī),對(duì)數(shù)學(xué)建模競(jìng)賽課程進(jìn)行改革,通過(guò)在教學(xué)團(tuán)隊(duì)、教學(xué)內(nèi)容和方法改革、多媒體課件、課程等方面的建設(shè),使該競(jìng)賽培訓(xùn)各個(gè)方面都取得了顯著提升,教學(xué)質(zhì)量取得了明顯提高,競(jìng)賽成績(jī)?nèi)〉昧司薮笸黄?。?jīng)過(guò)多年的競(jìng)賽實(shí)踐、教學(xué)改革,克服了傳統(tǒng)數(shù)學(xué)教學(xué)中重理論推導(dǎo)、輕應(yīng)用等,在教學(xué)模式上已形成了以下的特色:

(一)分模塊、項(xiàng)目案例式培訓(xùn)由于數(shù)學(xué)建模競(jìng)賽涉及許多不同課程的知識(shí),眾多知識(shí)相互交叉融合,使得培訓(xùn)的組織及實(shí)施具有一定的難度。因此,采用分模塊式教學(xué),分為若干個(gè)模型如規(guī)劃模型、圖論模型、時(shí)間序列、預(yù)測(cè)模型、綜合評(píng)價(jià)等,將競(jìng)賽所涉及的內(nèi)容以數(shù)學(xué)模型的形式講授,使數(shù)學(xué)模型之間既相對(duì)獨(dú)立又相互影響,易于學(xué)生接受。教學(xué)中以實(shí)際案例引出具體問(wèn)題的解決方法和理論。這種教學(xué)方法針對(duì)性強(qiáng),有的放矢,容易被學(xué)生接受,激發(fā)學(xué)生探索的興趣。

(二)理論模型與實(shí)踐相結(jié)合式培訓(xùn)數(shù)學(xué)建模競(jìng)賽目的就是考查學(xué)生利用所學(xué)的數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題能力,該競(jìng)賽培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。故此數(shù)學(xué)建模培訓(xùn)應(yīng)該是“實(shí)踐—理論—實(shí)05踐”,從實(shí)踐中尋找問(wèn)題,以數(shù)學(xué)方法解決問(wèn)題,再回到實(shí)踐中檢驗(yàn)解決方案是否合理。建模競(jìng)賽中學(xué)生應(yīng)將實(shí)際的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)建模,針對(duì)模型采用不同的方法,進(jìn)行求解,最后驗(yàn)證結(jié)果。如果不合理或者偏差比較大,必須重新分析問(wèn)題,建模,求解,驗(yàn)證,直至結(jié)果合理為止。

(三)理論模型與數(shù)學(xué)軟件相結(jié)合進(jìn)行培訓(xùn)數(shù)學(xué)建模競(jìng)賽涉及許多的模型求解和計(jì)算,必須利用計(jì)算機(jī)及其相關(guān)的數(shù)學(xué)軟件進(jìn)行編程求解。通過(guò)對(duì)MAT-LAB、LINDO、Python、SPSS等軟件的培訓(xùn),使學(xué)生對(duì)程序編程有一定掌握,提高了學(xué)生對(duì)數(shù)學(xué)模型的求解和計(jì)算能力。

(四)作業(yè)與科技論文寫作相結(jié)合式教學(xué)在數(shù)學(xué)建模競(jìng)賽培訓(xùn)中,給學(xué)生布置實(shí)際問(wèn)題的大作業(yè),要求學(xué)生按科技論文格式反映問(wèn)題解決的全過(guò)程,寫出論文,為將來(lái)科技論文寫作和畢業(yè)設(shè)計(jì)打下基礎(chǔ)。

(五)教學(xué)與建模競(jìng)賽相結(jié)合作為對(duì)教學(xué)成果的檢驗(yàn),鼓勵(lì)和選拔理工科專業(yè)優(yōu)秀學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。堅(jiān)持先學(xué)習(xí)相關(guān)知識(shí)、數(shù)學(xué)軟件、上機(jī)模擬、校內(nèi)競(jìng)賽,再參加全國(guó)競(jìng)賽的過(guò)程。學(xué)生受到了應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的鍛煉,提高了數(shù)學(xué)應(yīng)用能力。四、數(shù)學(xué)應(yīng)用能力的效果基于數(shù)學(xué)建模競(jìng)賽的大學(xué)生應(yīng)用能力的培養(yǎng)使學(xué)生廣泛受益,為學(xué)生考取碩士研究生、就業(yè)提供了有利條件,同時(shí)使教師和教學(xué)水平顯著提高。為國(guó)家在相關(guān)領(lǐng)域培養(yǎng)了一大批高質(zhì)量人才,為學(xué)校教學(xué)評(píng)估提供了學(xué)生學(xué)科競(jìng)賽重要支撐材料,提高了學(xué)校的聲譽(yù)。(1)為學(xué)生職業(yè)發(fā)展提供了知識(shí)和能力儲(chǔ)備。在學(xué)校畢業(yè)生中,經(jīng)歷過(guò)數(shù)學(xué)建模競(jìng)賽的學(xué)生在工作的適應(yīng)性上很強(qiáng),工作中復(fù)雜的一些項(xiàng)目,他們明顯比別人更快地解決。畢業(yè)生中涌現(xiàn)出一大批既懂?dāng)?shù)學(xué),又會(huì)應(yīng)用的人才。(2)顯著提升了學(xué)生的實(shí)踐創(chuàng)新能力和綜合素質(zhì)。經(jīng)過(guò)數(shù)學(xué)建模競(jìng)賽的學(xué)生,分析問(wèn)題、解決問(wèn)題的能力都比較強(qiáng)。他們不僅懂?dāng)?shù)學(xué),而且會(huì)將其應(yīng)用于實(shí)踐工程問(wèn)題中。學(xué)校每年的優(yōu)秀畢業(yè)生和獎(jiǎng)學(xué)金獲得者大部分都經(jīng)歷過(guò)數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。參加工作以后的畢業(yè)生懂?dāng)?shù)學(xué),會(huì)應(yīng)用的能力得到了社會(huì)的認(rèn)可和好評(píng)。(3)促進(jìn)了教學(xué)建設(shè),提升了教學(xué)水平,形成了高水平的教學(xué)團(tuán)隊(duì)、課程體系?;谂囵B(yǎng)理念,教師隊(duì)伍水平不斷提高。以數(shù)學(xué)建模競(jìng)賽牽引的大學(xué)生數(shù)學(xué)應(yīng)用能力培養(yǎng)模式將會(huì)形成一套切實(shí)可行的數(shù)學(xué)教學(xué)體系,為專業(yè)建設(shè)的提升提供新途徑,為高等院校數(shù)學(xué)課程的教學(xué)改革提供新的建構(gòu)模式。

參考文獻(xiàn):

[1]范文貴,張守波,朱鳳林.影響數(shù)學(xué)應(yīng)用能力之主要因素的剖析[J].錦州師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2000(01):67-69.

[2]孟軍,白鈺瑩,張戰(zhàn)國(guó),張譽(yù)蓉.?dāng)?shù)學(xué)建模競(jìng)賽對(duì)大學(xué)生創(chuàng)新能力的影響[J].科技管理研究,2021,41(22):205-212.

[3]陳娜,魏含玉.地方性二本院校大學(xué)生建模能力和創(chuàng)新能力的現(xiàn)狀調(diào)查分析[J].三門峽職業(yè)技術(shù)學(xué)院學(xué)報(bào),2021,20(04):123-128+146.

[4]余旭洪,金露莎,李珊.培養(yǎng)大學(xué)生數(shù)學(xué)應(yīng)用能力的教學(xué)改革思路[J].上海理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2019,41(03):282-286.

[5]高麗,王峰,楊科,路璐.大學(xué)生數(shù)學(xué)應(yīng)用能力和創(chuàng)新能力培養(yǎng)的評(píng)價(jià)模型[J].商丘師范學(xué)院學(xué)報(bào),2013,29(12):19-24.

作者:惠小健 王震章 培軍 于蓉蓉 陳瑤 單位:西京學(xué)院理學(xué)院